-
Philip Cowan authored
Implementation for JVET_N0100, proposal 1, allow signaling information about long-term reference picture POC LSB in reference picture list syntax structure.
Philip Cowan authoredImplementation for JVET_N0100, proposal 1, allow signaling information about long-term reference picture POC LSB in reference picture list syntax structure.
Slice.h 150.30 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Slice.h
\brief slice header and SPS class (header)
*/
#ifndef __SLICE__
#define __SLICE__
#include <cstring>
#include <list>
#include <map>
#include <vector>
#include "CommonDef.h"
#include "Rom.h"
#include "ChromaFormat.h"
#include "Common.h"
#include "HRD.h"
#if JVET_O0119_BASE_PALETTE_444
#include <unordered_map>
#endif
#include "AlfParameters.h"
//! \ingroup CommonLib
//! \{
#include "CommonLib/MotionInfo.h"
struct MotionInfo;
struct Picture;
class Pic;
class TrQuant;
// ====================================================================================================================
// Constants
// ====================================================================================================================
class PreCalcValues;
static const uint32_t REF_PIC_LIST_NUM_IDX=32;
typedef std::list<Picture*> PicList;
// ====================================================================================================================
// Class definition
// ====================================================================================================================
class ReferencePictureList
{
private:
int m_numberOfShorttermPictures;
int m_numberOfLongtermPictures;
int m_isLongtermRefPic[MAX_NUM_REF_PICS];
int m_refPicIdentifier[MAX_NUM_REF_PICS]; //This can be delta POC for STRP or POC LSB for LTRP
int m_POC[MAX_NUM_REF_PICS];
int m_numberOfActivePictures;
bool m_deltaPocMSBPresentFlag[MAX_NUM_REF_PICS];
int m_deltaPOCMSBCycleLT[MAX_NUM_REF_PICS];
#if JVET_N0100_PROPOSAL1
bool m_ltrp_in_slice_header_flag;
#endif
public:
ReferencePictureList();
virtual ~ReferencePictureList();
void setRefPicIdentifier(int idx, int identifier, bool isLongterm);
int getRefPicIdentifier(int idx) const;
bool isRefPicLongterm(int idx) const;
void setNumberOfShorttermPictures(int numberOfStrp);
int getNumberOfShorttermPictures() const;
void setNumberOfLongtermPictures(int numberOfLtrp);
int getNumberOfLongtermPictures() const;
#if JVET_N0100_PROPOSAL1
void setLtrpInSliceHeaderFlag(bool flag) { m_ltrp_in_slice_header_flag = flag; }
bool getLtrpInSliceHeaderFlag() const { return m_ltrp_in_slice_header_flag; }
#endif
int getNumRefEntries() const { return m_numberOfShorttermPictures + m_numberOfLongtermPictures; }
void setPOC(int idx, int POC);
int getPOC(int idx) const;
void setNumberOfActivePictures(int numberOfLtrp);
int getNumberOfActivePictures() const;
int getDeltaPocMSBCycleLT(int i) const { return m_deltaPOCMSBCycleLT[i]; }
void setDeltaPocMSBCycleLT(int i, int x) { m_deltaPOCMSBCycleLT[i] = x; }
bool getDeltaPocMSBPresentFlag(int i) const { return m_deltaPocMSBPresentFlag[i]; }
void setDeltaPocMSBPresentFlag(int i, bool x) { m_deltaPocMSBPresentFlag[i] = x; }
void printRefPicInfo() const;
};
/// Reference Picture List set class
class RPLList
{
private:
std::vector<ReferencePictureList> m_referencePictureLists;
public:
RPLList() { }
virtual ~RPLList() { }
void create(int numberOfEntries) { m_referencePictureLists.resize(numberOfEntries); }
void destroy() { }
ReferencePictureList* getReferencePictureList(int referencePictureListIdx) { return &m_referencePictureLists[referencePictureListIdx]; }
const ReferencePictureList* getReferencePictureList(int referencePictureListIdx) const { return &m_referencePictureLists[referencePictureListIdx]; }
int getNumberOfReferencePictureLists() const { return int(m_referencePictureLists.size()); }
};
/// SCALING_LIST class
class ScalingList
{
public:
ScalingList();
virtual ~ScalingList() { }
int* getScalingListAddress(uint32_t sizeId, uint32_t listId) { return &(m_scalingListCoef[sizeId][listId][0]); } //!< get matrix coefficient
const int* getScalingListAddress(uint32_t sizeId, uint32_t listId) const { return &(m_scalingListCoef[sizeId][listId][0]); } //!< get matrix coefficient
void checkPredMode(uint32_t sizeId, uint32_t listId);
void setRefMatrixId(uint32_t sizeId, uint32_t listId, uint32_t u) { m_refMatrixId[sizeId][listId] = u; } //!< set reference matrix ID
uint32_t getRefMatrixId(uint32_t sizeId, uint32_t listId) const { return m_refMatrixId[sizeId][listId]; } //!< get reference matrix ID
const int* getScalingListDefaultAddress(uint32_t sizeId, uint32_t listId); //!< get default matrix coefficient
void processDefaultMatrix(uint32_t sizeId, uint32_t listId);
void setScalingListDC(uint32_t sizeId, uint32_t listId, uint32_t u) { m_scalingListDC[sizeId][listId] = u; } //!< set DC value
int getScalingListDC(uint32_t sizeId, uint32_t listId) const { return m_scalingListDC[sizeId][listId]; } //!< get DC value
void setScalingListPredModeFlag(uint32_t sizeId, uint32_t listId, bool bIsDPCM) { m_scalingListPredModeFlagIsDPCM[sizeId][listId] = bIsDPCM; }
bool getScalingListPredModeFlag(uint32_t sizeId, uint32_t listId) const { return m_scalingListPredModeFlagIsDPCM[sizeId][listId]; }
void checkDcOfMatrix();
void processRefMatrix(uint32_t sizeId, uint32_t listId , uint32_t refListId );
bool xParseScalingList(const std::string &fileName);
void setDefaultScalingList();
bool checkDefaultScalingList();
private:
void outputScalingLists(std::ostream &os) const;
bool m_scalingListPredModeFlagIsDPCM [SCALING_LIST_SIZE_NUM][SCALING_LIST_NUM]; //!< reference list index
int m_scalingListDC [SCALING_LIST_SIZE_NUM][SCALING_LIST_NUM]; //!< the DC value of the matrix coefficient for 16x16
uint32_t m_refMatrixId [SCALING_LIST_SIZE_NUM][SCALING_LIST_NUM]; //!< RefMatrixID
std::vector<int> m_scalingListCoef [SCALING_LIST_SIZE_NUM][SCALING_LIST_NUM]; //!< quantization matrix
};
class ConstraintInfo
{
bool m_progressiveSourceFlag;
bool m_interlacedSourceFlag;
bool m_nonPackedConstraintFlag;
bool m_frameOnlyConstraintFlag;
bool m_intraOnlyConstraintFlag;
uint32_t m_maxBitDepthConstraintIdc;
ChromaFormat m_maxChromaFormatConstraintIdc;
bool m_onePictureOnlyConstraintFlag;
bool m_lowerBitRateConstraintFlag;
bool m_noQtbttDualTreeIntraConstraintFlag;
bool m_noPartitionConstraintsOverrideConstraintFlag;
bool m_noSaoConstraintFlag;
bool m_noAlfConstraintFlag;
bool m_noPcmConstraintFlag;
bool m_noRefWraparoundConstraintFlag;
bool m_noTemporalMvpConstraintFlag;
bool m_noSbtmvpConstraintFlag;
bool m_noAmvrConstraintFlag;
bool m_noBdofConstraintFlag;
bool m_noDmvrConstraintFlag;
bool m_noCclmConstraintFlag;
bool m_noMtsConstraintFlag;
bool m_noSbtConstraintFlag;
bool m_noAffineMotionConstraintFlag;
bool m_noGbiConstraintFlag;
bool m_noIbcConstraintFlag;
bool m_noMhIntraConstraintFlag;
bool m_noFPelMmvdConstraintFlag;
bool m_noTriangleConstraintFlag;
bool m_noLadfConstraintFlag;
bool m_noTransformSkipConstraintFlag;
#if JVET_O1136_TS_BDPCM_SIGNALLING
bool m_noBDPCMConstraintFlag;
#endif
#if JVET_O0376_SPS_JOINTCBCR_FLAG
bool m_noJointCbCrConstraintFlag;
#endif
bool m_noQpDeltaConstraintFlag;
bool m_noDepQuantConstraintFlag;
bool m_noSignDataHidingConstraintFlag;
public:
ConstraintInfo()
: m_progressiveSourceFlag (false)
, m_interlacedSourceFlag (false)
, m_nonPackedConstraintFlag (false)
, m_frameOnlyConstraintFlag (false)
, m_intraOnlyConstraintFlag (false)
, m_maxBitDepthConstraintIdc ( 0)
, m_maxChromaFormatConstraintIdc(CHROMA_420)
, m_noQtbttDualTreeIntraConstraintFlag(false)
, m_noPartitionConstraintsOverrideConstraintFlag(false)
, m_noSaoConstraintFlag (false)
, m_noAlfConstraintFlag (false)
, m_noPcmConstraintFlag (false)
, m_noRefWraparoundConstraintFlag(false)
, m_noTemporalMvpConstraintFlag(false)
, m_noSbtmvpConstraintFlag (false)
, m_noAmvrConstraintFlag (false)
, m_noBdofConstraintFlag (false)
, m_noDmvrConstraintFlag (false)
, m_noCclmConstraintFlag (false)
, m_noMtsConstraintFlag (false)
, m_noSbtConstraintFlag (false)
, m_noAffineMotionConstraintFlag(false)
, m_noGbiConstraintFlag (false)
, m_noIbcConstraintFlag (false)
, m_noMhIntraConstraintFlag (false)
, m_noFPelMmvdConstraintFlag (false)
, m_noTriangleConstraintFlag (false)
, m_noLadfConstraintFlag (false)
, m_noTransformSkipConstraintFlag(false)
#if JVET_O1136_TS_BDPCM_SIGNALLING
, m_noBDPCMConstraintFlag (false)
#endif
#if JVET_O0376_SPS_JOINTCBCR_FLAG
, m_noJointCbCrConstraintFlag (false)
#endif
, m_noQpDeltaConstraintFlag (false)
, m_noDepQuantConstraintFlag (false)
, m_noSignDataHidingConstraintFlag(false)
{}
bool getProgressiveSourceFlag() const { return m_progressiveSourceFlag; }
void setProgressiveSourceFlag(bool b) { m_progressiveSourceFlag = b; }
bool getInterlacedSourceFlag() const { return m_interlacedSourceFlag; }
void setInterlacedSourceFlag(bool b) { m_interlacedSourceFlag = b; }
bool getNonPackedConstraintFlag() const { return m_nonPackedConstraintFlag; }
void setNonPackedConstraintFlag(bool b) { m_nonPackedConstraintFlag = b; }
bool getFrameOnlyConstraintFlag() const { return m_frameOnlyConstraintFlag; }
void setFrameOnlyConstraintFlag(bool b) { m_frameOnlyConstraintFlag = b; }
uint32_t getMaxBitDepthConstraintIdc() const { return m_maxBitDepthConstraintIdc; }
void setMaxBitDepthConstraintIdc(uint32_t bitDepth) { m_maxBitDepthConstraintIdc = bitDepth; }
ChromaFormat getMaxChromaFormatConstraintIdc() const { return m_maxChromaFormatConstraintIdc; }
void setMaxChromaFormatConstraintIdc(ChromaFormat fmt) { m_maxChromaFormatConstraintIdc = fmt; }
bool getIntraOnlyConstraintFlag() const { return m_intraOnlyConstraintFlag; }
void setIntraOnlyConstraintFlag(bool b) { m_intraOnlyConstraintFlag = b; }
bool getOnePictureOnlyConstraintFlag() const { return m_onePictureOnlyConstraintFlag; }
void setOnePictureOnlyConstraintFlag(bool b) { m_onePictureOnlyConstraintFlag = b; }
bool getLowerBitRateConstraintFlag() const { return m_lowerBitRateConstraintFlag; }
void setLowerBitRateConstraintFlag(bool b) { m_lowerBitRateConstraintFlag = b; }
bool getNoQtbttDualTreeIntraConstraintFlag() const { return m_noQtbttDualTreeIntraConstraintFlag; }
void setNoQtbttDualTreeIntraConstraintFlag(bool bVal) { m_noQtbttDualTreeIntraConstraintFlag = bVal; }
bool getNoPartitionConstraintsOverrideConstraintFlag() const { return m_noPartitionConstraintsOverrideConstraintFlag; }
void setNoPartitionConstraintsOverrideConstraintFlag(bool bVal) { m_noPartitionConstraintsOverrideConstraintFlag = bVal; }
bool getNoSaoConstraintFlag() const { return m_noSaoConstraintFlag; }
void setNoSaoConstraintFlag(bool bVal) { m_noSaoConstraintFlag = bVal; }
bool getNoAlfConstraintFlag() const { return m_noAlfConstraintFlag; }
void setNoAlfConstraintFlag(bool bVal) { m_noAlfConstraintFlag = bVal; }
#if JVET_O0376_SPS_JOINTCBCR_FLAG
bool getNoJointCbCrConstraintFlag() const { return m_noJointCbCrConstraintFlag; }
void setNoJointCbCrConstraintFlag(bool bVal) { m_noJointCbCrConstraintFlag = bVal; }
#endif
bool getNoPcmConstraintFlag() const { return m_noPcmConstraintFlag; }
void setNoPcmConstraintFlag(bool bVal) { m_noPcmConstraintFlag = bVal; }
bool getNoRefWraparoundConstraintFlag() const { return m_noRefWraparoundConstraintFlag; }
void setNoRefWraparoundConstraintFlag(bool bVal) { m_noRefWraparoundConstraintFlag = bVal; }
bool getNoTemporalMvpConstraintFlag() const { return m_noTemporalMvpConstraintFlag; }
void setNoTemporalMvpConstraintFlag(bool bVal) { m_noTemporalMvpConstraintFlag = bVal; }
bool getNoSbtmvpConstraintFlag() const { return m_noSbtmvpConstraintFlag; }
void setNoSbtmvpConstraintFlag(bool bVal) { m_noSbtmvpConstraintFlag = bVal; }
bool getNoAmvrConstraintFlag() const { return m_noAmvrConstraintFlag; }
void setNoAmvrConstraintFlag(bool bVal) { m_noAmvrConstraintFlag = bVal; }
bool getNoBdofConstraintFlag() const { return m_noBdofConstraintFlag; }
void setNoBdofConstraintFlag(bool bVal) { m_noBdofConstraintFlag = bVal; }
bool getNoDmvrConstraintFlag() const { return m_noDmvrConstraintFlag; }
void setNoDmvrConstraintFlag(bool bVal) { m_noDmvrConstraintFlag = bVal; }
bool getNoCclmConstraintFlag() const { return m_noCclmConstraintFlag; }
void setNoCclmConstraintFlag(bool bVal) { m_noCclmConstraintFlag = bVal; }
bool getNoMtsConstraintFlag() const { return m_noMtsConstraintFlag; }
void setNoMtsConstraintFlag(bool bVal) { m_noMtsConstraintFlag = bVal; }
bool getNoSbtConstraintFlag() const { return m_noSbtConstraintFlag; }
void setNoSbtConstraintFlag(bool bVal) { m_noSbtConstraintFlag = bVal; }
bool getNoAffineMotionConstraintFlag() const { return m_noAffineMotionConstraintFlag; }
void setNoAffineMotionConstraintFlag(bool bVal) { m_noAffineMotionConstraintFlag = bVal; }
bool getNoGbiConstraintFlag() const { return m_noGbiConstraintFlag; }
void setNoGbiConstraintFlag(bool bVal) { m_noGbiConstraintFlag = bVal; }
bool getNoIbcConstraintFlag() const { return m_noIbcConstraintFlag; }
void setNoIbcConstraintFlag(bool bVal) { m_noIbcConstraintFlag = bVal; }
bool getNoMhIntraConstraintFlag() const { return m_noMhIntraConstraintFlag; }
void setNoMhIntraConstraintFlag(bool bVal) { m_noMhIntraConstraintFlag = bVal; }
bool getNoFPelMmvdConstraintFlag() const { return m_noFPelMmvdConstraintFlag; }
void setNoFPelMmvdConstraintFlag(bool bVal) { m_noFPelMmvdConstraintFlag = bVal; }
bool getNoTriangleConstraintFlag() const { return m_noTriangleConstraintFlag; }
void setNoTriangleConstraintFlag(bool bVal) { m_noTriangleConstraintFlag = bVal; }
bool getNoLadfConstraintFlag() const { return m_noLadfConstraintFlag; }
void setNoLadfConstraintFlag(bool bVal) { m_noLadfConstraintFlag = bVal; }
bool getNoTransformSkipConstraintFlag() const { return m_noTransformSkipConstraintFlag; }
void setNoTransformSkipConstraintFlag(bool bVal) { m_noTransformSkipConstraintFlag = bVal; }
#if JVET_O1136_TS_BDPCM_SIGNALLING
bool getNoBDPCMConstraintFlag() const { return m_noBDPCMConstraintFlag; }
void setNoBDPCMConstraintFlag(bool bVal) { m_noBDPCMConstraintFlag = bVal; }
#endif
bool getNoQpDeltaConstraintFlag() const { return m_noQpDeltaConstraintFlag; }
void setNoQpDeltaConstraintFlag(bool bVal) { m_noQpDeltaConstraintFlag = bVal; }
bool getNoDepQuantConstraintFlag() const { return m_noDepQuantConstraintFlag; }
void setNoDepQuantConstraintFlag(bool bVal) { m_noDepQuantConstraintFlag = bVal; }
bool getNoSignDataHidingConstraintFlag() const { return m_noSignDataHidingConstraintFlag; }
void setNoSignDataHidingConstraintFlag(bool bVal) { m_noSignDataHidingConstraintFlag = bVal; }
};
class ProfileTierLevel
{
Level::Tier m_tierFlag;
Profile::Name m_profileIdc;
uint32_t m_subProfileIdc;
Level::Name m_levelIdc;
ConstraintInfo m_constraintInfo;
bool m_subLayerLevelPresentFlag[MAX_TLAYER - 1];
Level::Name m_subLayerLevelIdc[MAX_TLAYER - 1];
public:
ProfileTierLevel();
Level::Tier getTierFlag() const { return m_tierFlag; }
void setTierFlag(Level::Tier x) { m_tierFlag = x; }
Profile::Name getProfileIdc() const { return m_profileIdc; }
void setProfileIdc(Profile::Name x) { m_profileIdc = x; }
uint32_t getSubProfileIdc() const { return m_subProfileIdc; }
void setSubProfileIdc(uint32_t x) { m_subProfileIdc = x; }
Level::Name getLevelIdc() const { return m_levelIdc; }
void setLevelIdc(Level::Name x) { m_levelIdc = x; }
ConstraintInfo* getConstraintInfo() { return &m_constraintInfo; }
const ConstraintInfo* getConstraintInfo() const { return &m_constraintInfo; }
bool getSubLayerLevelPresentFlag(int i) const { return m_subLayerLevelPresentFlag[i]; }
void setSubLayerLevelPresentFlag(int i, bool x) { m_subLayerLevelPresentFlag[i] = x; }
Level::Name getSubLayerLevelIdc(int i) const { return m_subLayerLevelIdc[i]; }
void setSubLayerLevelIdc(int i, Level::Name x) { m_subLayerLevelIdc[i] = x; }
};
class SliceReshapeInfo
{
public:
bool sliceReshaperEnableFlag;
bool sliceReshaperModelPresentFlag;
unsigned enableChromaAdj;
uint32_t reshaperModelMinBinIdx;
uint32_t reshaperModelMaxBinIdx;
int reshaperModelBinCWDelta[PIC_CODE_CW_BINS];
int maxNbitsNeededDeltaCW;
void setUseSliceReshaper(bool b) { sliceReshaperEnableFlag = b; }
bool getUseSliceReshaper() const { return sliceReshaperEnableFlag; }
void setSliceReshapeModelPresentFlag(bool b) { sliceReshaperModelPresentFlag = b; }
bool getSliceReshapeModelPresentFlag() const { return sliceReshaperModelPresentFlag; }
void setSliceReshapeChromaAdj(unsigned adj) { enableChromaAdj = adj; }
unsigned getSliceReshapeChromaAdj() const { return enableChromaAdj; }
};
struct ReshapeCW
{
std::vector<uint32_t> binCW;
#if JVET_O0432_LMCS_ENCODER
int updateCtrl;
int adpOption;
uint32_t initialCW;
#endif
int rspPicSize;
#if !JVET_O0432_LMCS_ENCODER
int rspIntraPeriod;
#endif
int rspFps;
int rspBaseQP;
int rspTid;
int rspSliceQP;
int rspFpsToIp;
};
struct ChromaQpAdj
{
union
{
struct {
int CbOffset;
int CrOffset;
#if JVET_O1168_CU_CHROMA_QP_OFFSET
int JointCbCrOffset;
#endif
} comp;
#if JVET_O1168_CU_CHROMA_QP_OFFSET
int offset[3];
#else
int offset[2]; /* two chroma components */
#endif
} u;
};
#if JVET_O0650_SIGNAL_CHROMAQP_MAPPING_TABLE
struct ChromaQpMappingTableParams {
int m_qpBdOffset;
bool m_sameCQPTableForAllChromaFlag;
int m_numPtsInCQPTableMinus1[MAX_NUM_CQP_MAPPING_TABLES];
std::vector<int> m_deltaQpInValMinus1[MAX_NUM_CQP_MAPPING_TABLES];
std::vector<int> m_deltaQpOutVal[MAX_NUM_CQP_MAPPING_TABLES];
ChromaQpMappingTableParams()
{
m_qpBdOffset = 12;
m_sameCQPTableForAllChromaFlag = true;
m_numPtsInCQPTableMinus1[0] = 0;
m_deltaQpInValMinus1[0] = { 0 };
m_deltaQpOutVal[0] = { 0 };
}
void setSameCQPTableForAllChromaFlag(bool b) { m_sameCQPTableForAllChromaFlag = b; }
bool getSameCQPTableForAllChromaFlag() const { return m_sameCQPTableForAllChromaFlag; }
void setNumPtsInCQPTableMinus1(int tableIdx, int n) { m_numPtsInCQPTableMinus1[tableIdx] = n; }
int getNumPtsInCQPTableMinus1(int tableIdx) const { return m_numPtsInCQPTableMinus1[tableIdx]; }
void setDeltaQpInValMinus1(int tableIdx, std::vector<int> &inVals) { m_deltaQpInValMinus1[tableIdx] = inVals; }
void setDeltaQpInValMinus1(int tableIdx, int idx, int n) { m_deltaQpInValMinus1[tableIdx][idx] = n; }
int getDeltaQpInValMinus1(int tableIdx, int idx) const { return m_deltaQpInValMinus1[tableIdx][idx]; }
void setDeltaQpOutVal(int tableIdx, std::vector<int> &outVals) { m_deltaQpOutVal[tableIdx] = outVals; }
void setDeltaQpOutVal(int tableIdx, int idx, int n) { m_deltaQpOutVal[tableIdx][idx] = n; }
int getDeltaQpOutVal(int tableIdx, int idx) const { return m_deltaQpOutVal[tableIdx][idx]; }
};
struct ChromaQpMappingTable : ChromaQpMappingTableParams
{
std::map<int, int> m_chromaQpMappingTables[MAX_NUM_CQP_MAPPING_TABLES];
int getMappedChromaQpValue(ComponentID compID, const int qpVal) const { return m_chromaQpMappingTables[m_sameCQPTableForAllChromaFlag ? 0 : (int)compID - 1].at(qpVal); }
void derivedChromaQPMappingTables();
void setParams(const ChromaQpMappingTableParams ¶ms, const int qpBdOffset);
};
#endif
class DPS
{
private:
int m_decodingParameterSetId;
int m_maxSubLayersMinus1;
ProfileTierLevel m_profileTierLevel;
public:
DPS()
: m_decodingParameterSetId(-1)
, m_maxSubLayersMinus1 (0)
{};
virtual ~DPS() {};
int getDecodingParameterSetId() const { return m_decodingParameterSetId; }
void setDecodingParameterSetId(int val) { m_decodingParameterSetId = val; }
int getMaxSubLayersMinus1() const { return m_maxSubLayersMinus1; }
void setMaxSubLayersMinus1(int val) { m_maxSubLayersMinus1 = val; }
void setProfileTierLevel(const ProfileTierLevel &val) { m_profileTierLevel = val; }
const ProfileTierLevel& getProfileTierLevel() const { return m_profileTierLevel; }
};
class VPS
{
private:
int m_VPSId;
uint32_t m_uiMaxLayers;
uint32_t m_vpsIncludedLayerId[MAX_VPS_LAYERS];
bool m_vpsExtensionFlag;
public:
VPS();
virtual ~VPS();
int getVPSId() const { return m_VPSId; }
void setVPSId(int i) { m_VPSId = i; }
uint32_t getMaxLayers() const { return m_uiMaxLayers; }
void setMaxLayers(uint32_t l) { m_uiMaxLayers = l; }
bool getVPSExtensionFlag() const { return m_vpsExtensionFlag; }
void setVPSExtensionFlag(bool t) { m_vpsExtensionFlag = t; }
void setVPSIncludedLayerId(uint32_t v, uint32_t Layer) { m_vpsIncludedLayerId[Layer] = v; }
uint32_t getVPSIncludedLayerId(uint32_t Layer) const { return m_vpsIncludedLayerId[Layer]; }
};
class Window
{
private:
bool m_enabledFlag;
int m_winLeftOffset;
int m_winRightOffset;
int m_winTopOffset;
int m_winBottomOffset;
public:
Window()
: m_enabledFlag (false)
, m_winLeftOffset (0)
, m_winRightOffset (0)
, m_winTopOffset (0)
, m_winBottomOffset(0)
{ }
bool getWindowEnabledFlag() const { return m_enabledFlag; }
int getWindowLeftOffset() const { return m_enabledFlag ? m_winLeftOffset : 0; }
void setWindowLeftOffset(int val) { m_winLeftOffset = val; m_enabledFlag = true; }
int getWindowRightOffset() const { return m_enabledFlag ? m_winRightOffset : 0; }
void setWindowRightOffset(int val) { m_winRightOffset = val; m_enabledFlag = true; }
int getWindowTopOffset() const { return m_enabledFlag ? m_winTopOffset : 0; }
void setWindowTopOffset(int val) { m_winTopOffset = val; m_enabledFlag = true; }
int getWindowBottomOffset() const { return m_enabledFlag ? m_winBottomOffset: 0; }
void setWindowBottomOffset(int val) { m_winBottomOffset = val; m_enabledFlag = true; }
void setWindow(int offsetLeft, int offsetLRight, int offsetLTop, int offsetLBottom)
{
m_enabledFlag = true;
m_winLeftOffset = offsetLeft;
m_winRightOffset = offsetLRight;
m_winTopOffset = offsetLTop;
m_winBottomOffset = offsetLBottom;
}
};
class VUI
{
private:
bool m_aspectRatioInfoPresentFlag;
int m_aspectRatioIdc;
int m_sarWidth;
int m_sarHeight;
bool m_colourDescriptionPresentFlag;
int m_colourPrimaries;
int m_transferCharacteristics;
int m_matrixCoefficients;
bool m_fieldSeqFlag;
bool m_chromaLocInfoPresentFlag;
int m_chromaSampleLocTypeTopField;
int m_chromaSampleLocTypeBottomField;
int m_chromaSampleLocType;
bool m_overscanInfoPresentFlag;
bool m_overscanAppropriateFlag;
bool m_videoSignalTypePresentFlag;
bool m_videoFullRangeFlag;
public:
VUI()
: m_aspectRatioInfoPresentFlag (false) //TODO: This initialiser list contains magic numbers
, m_aspectRatioIdc (0)
, m_sarWidth (0)
, m_sarHeight (0)
, m_colourDescriptionPresentFlag (false)
, m_colourPrimaries (2)
, m_transferCharacteristics (2)
, m_matrixCoefficients (2)
, m_fieldSeqFlag (false)
, m_chromaLocInfoPresentFlag (false)
, m_chromaSampleLocTypeTopField (0)
, m_chromaSampleLocTypeBottomField (0)
, m_chromaSampleLocType (0)
, m_overscanInfoPresentFlag (false)
, m_overscanAppropriateFlag (false)
, m_videoSignalTypePresentFlag (false)
, m_videoFullRangeFlag (false)
{}
virtual ~VUI() {}
bool getAspectRatioInfoPresentFlag() const { return m_aspectRatioInfoPresentFlag; }
void setAspectRatioInfoPresentFlag(bool i) { m_aspectRatioInfoPresentFlag = i; }
int getAspectRatioIdc() const { return m_aspectRatioIdc; }
void setAspectRatioIdc(int i) { m_aspectRatioIdc = i; }
int getSarWidth() const { return m_sarWidth; }
void setSarWidth(int i) { m_sarWidth = i; }
int getSarHeight() const { return m_sarHeight; }
void setSarHeight(int i) { m_sarHeight = i; }
bool getColourDescriptionPresentFlag() const { return m_colourDescriptionPresentFlag; }
void setColourDescriptionPresentFlag(bool i) { m_colourDescriptionPresentFlag = i; }
int getColourPrimaries() const { return m_colourPrimaries; }
void setColourPrimaries(int i) { m_colourPrimaries = i; }
int getTransferCharacteristics() const { return m_transferCharacteristics; }
void setTransferCharacteristics(int i) { m_transferCharacteristics = i; }
int getMatrixCoefficients() const { return m_matrixCoefficients; }
void setMatrixCoefficients(int i) { m_matrixCoefficients = i; }
bool getFieldSeqFlag() const { return m_fieldSeqFlag; }
void setFieldSeqFlag(bool i) { m_fieldSeqFlag = i; }
bool getChromaLocInfoPresentFlag() const { return m_chromaLocInfoPresentFlag; }
void setChromaLocInfoPresentFlag(bool i) { m_chromaLocInfoPresentFlag = i; }
int getChromaSampleLocTypeTopField() const { return m_chromaSampleLocTypeTopField; }
void setChromaSampleLocTypeTopField(int i) { m_chromaSampleLocTypeTopField = i; }
int getChromaSampleLocTypeBottomField() const { return m_chromaSampleLocTypeBottomField; }
void setChromaSampleLocTypeBottomField(int i) { m_chromaSampleLocTypeBottomField = i; }
int getChromaSampleLocType() const { return m_chromaSampleLocType; }
void setChromaSampleLocType(int i) { m_chromaSampleLocType = i; }
bool getOverscanInfoPresentFlag() const { return m_overscanInfoPresentFlag; }
void setOverscanInfoPresentFlag(bool i) { m_overscanInfoPresentFlag = i; }
bool getOverscanAppropriateFlag() const { return m_overscanAppropriateFlag; }
void setOverscanAppropriateFlag(bool i) { m_overscanAppropriateFlag = i; }
bool getVideoSignalTypePresentFlag() const { return m_videoSignalTypePresentFlag; }
void setVideoSignalTypePresentFlag(bool i) { m_videoSignalTypePresentFlag = i; }
bool getVideoFullRangeFlag() const { return m_videoFullRangeFlag; }
void setVideoFullRangeFlag(bool i) { m_videoFullRangeFlag = i; }
};
/// SPS RExt class
class SPSRExt // Names aligned to text specification
{
private:
bool m_transformSkipRotationEnabledFlag;
bool m_transformSkipContextEnabledFlag;
bool m_rdpcmEnabledFlag[NUMBER_OF_RDPCM_SIGNALLING_MODES];
bool m_extendedPrecisionProcessingFlag;
bool m_intraSmoothingDisabledFlag;
bool m_highPrecisionOffsetsEnabledFlag;
bool m_persistentRiceAdaptationEnabledFlag;
bool m_cabacBypassAlignmentEnabledFlag;
public:
SPSRExt();
bool settingsDifferFromDefaults() const
{
return getTransformSkipRotationEnabledFlag()
|| getTransformSkipContextEnabledFlag()
|| getRdpcmEnabledFlag(RDPCM_SIGNAL_IMPLICIT)
|| getRdpcmEnabledFlag(RDPCM_SIGNAL_EXPLICIT)
|| getExtendedPrecisionProcessingFlag()
|| getIntraSmoothingDisabledFlag()
|| getHighPrecisionOffsetsEnabledFlag()
|| getPersistentRiceAdaptationEnabledFlag()
|| getCabacBypassAlignmentEnabledFlag();
}
bool getTransformSkipRotationEnabledFlag() const { return m_transformSkipRotationEnabledFlag; }
void setTransformSkipRotationEnabledFlag(const bool value) { m_transformSkipRotationEnabledFlag = value; }
bool getTransformSkipContextEnabledFlag() const { return m_transformSkipContextEnabledFlag; }
void setTransformSkipContextEnabledFlag(const bool value) { m_transformSkipContextEnabledFlag = value; }
bool getRdpcmEnabledFlag(const RDPCMSignallingMode signallingMode) const { return m_rdpcmEnabledFlag[signallingMode]; }
void setRdpcmEnabledFlag(const RDPCMSignallingMode signallingMode, const bool value) { m_rdpcmEnabledFlag[signallingMode] = value; }
bool getExtendedPrecisionProcessingFlag() const { return m_extendedPrecisionProcessingFlag; }
void setExtendedPrecisionProcessingFlag(bool value) { m_extendedPrecisionProcessingFlag = value; }
bool getIntraSmoothingDisabledFlag() const { return m_intraSmoothingDisabledFlag; }
void setIntraSmoothingDisabledFlag(bool bValue) { m_intraSmoothingDisabledFlag=bValue; }
bool getHighPrecisionOffsetsEnabledFlag() const { return m_highPrecisionOffsetsEnabledFlag; }
void setHighPrecisionOffsetsEnabledFlag(bool value) { m_highPrecisionOffsetsEnabledFlag = value; }
bool getPersistentRiceAdaptationEnabledFlag() const { return m_persistentRiceAdaptationEnabledFlag; }
void setPersistentRiceAdaptationEnabledFlag(const bool value) { m_persistentRiceAdaptationEnabledFlag = value; }
bool getCabacBypassAlignmentEnabledFlag() const { return m_cabacBypassAlignmentEnabledFlag; }
void setCabacBypassAlignmentEnabledFlag(const bool value) { m_cabacBypassAlignmentEnabledFlag = value; }
};
/// SPS class
class SPS
{
private:
int m_SPSId;
int m_decodingParameterSetId;
bool m_affineAmvrEnabledFlag;
bool m_DMVR;
bool m_MMVD;
bool m_SBT;
uint8_t m_MaxSbtSize;
bool m_ISP;
ChromaFormat m_chromaFormatIdc;
uint32_t m_uiMaxTLayers; // maximum number of temporal layers
// Structure
uint32_t m_picWidthInLumaSamples;
uint32_t m_picHeightInLumaSamples;
int m_log2MinCodingBlockSize;
int m_log2DiffMaxMinCodingBlockSize;
unsigned m_CTUSize;
unsigned m_partitionOverrideEnalbed; // enable partition constraints override function
unsigned m_minQT[3]; // 0: I slice luma; 1: P/B slice; 2: I slice chroma
unsigned m_maxBTDepth[3];
unsigned m_maxBTSize[3];
unsigned m_maxTTSize[3];
bool m_idrRefParamList;
unsigned m_dualITree;
uint32_t m_uiMaxCUWidth;
uint32_t m_uiMaxCUHeight;
uint32_t m_uiMaxCodingDepth; ///< Total CU depth, relative to the smallest possible transform block size.
Window m_conformanceWindow;
RPLList m_RPLList0;
RPLList m_RPLList1;
uint32_t m_numRPL0;
uint32_t m_numRPL1;
bool m_rpl1CopyFromRpl0Flag;
bool m_rpl1IdxPresentFlag;
bool m_allRplEntriesHasSameSignFlag;
bool m_bLongTermRefsPresent;
bool m_SPSTemporalMVPEnabledFlag;
int m_numReorderPics[MAX_TLAYER];
// Tool list
bool m_pcmEnabledFlag;
uint32_t m_pcmLog2MaxSize;
uint32_t m_uiPCMLog2MinSize;
#if JVET_O1136_TS_BDPCM_SIGNALLING
bool m_transformSkipEnabledFlag;
bool m_BDPCMEnabledFlag;
#endif
#if JVET_O0376_SPS_JOINTCBCR_FLAG
bool m_JointCbCrEnabledFlag;
#endif
// Parameter
BitDepths m_bitDepths;
int m_qpBDOffset[MAX_NUM_CHANNEL_TYPE];
#if JVET_O0919_TS_MIN_QP
int m_minQpMinus4[MAX_NUM_CHANNEL_TYPE]; // QP_internal - QP_input;
#endif
int m_pcmBitDepths[MAX_NUM_CHANNEL_TYPE];
bool m_bPCMFilterDisableFlag;
bool m_sbtmvpEnabledFlag;
bool m_bdofEnabledFlag;
bool m_fpelMmvdEnabledFlag;
#if JVET_O1140_SLICE_DISABLE_BDOF_DMVR_FLAG
bool m_BdofDmvrSlicePresentFlag;
#endif
uint32_t m_uiBitsForPOC;
uint32_t m_numLongTermRefPicSPS;
uint32_t m_ltRefPicPocLsbSps[MAX_NUM_LONG_TERM_REF_PICS];
bool m_usedByCurrPicLtSPSFlag[MAX_NUM_LONG_TERM_REF_PICS];
#if MAX_TB_SIZE_SIGNALLING
uint32_t m_log2MaxTbSize;
#endif
#if JVET_O0244_DELTA_POC
bool m_useWeightPred; //!< Use of Weighting Prediction (P_SLICE)
bool m_useWeightedBiPred; //!< Use of Weighting Bi-Prediction (B_SLICE)
#endif
bool m_saoEnabledFlag;
bool m_bTemporalIdNestingFlag; // temporal_id_nesting_flag
bool m_scalingListEnabledFlag;
bool m_scalingListPresentFlag;
ScalingList m_scalingList;
uint32_t m_uiMaxDecPicBuffering[MAX_TLAYER];
uint32_t m_uiMaxLatencyIncreasePlus1[MAX_TLAYER];
TimingInfo m_timingInfo;
bool m_hrdParametersPresentFlag;
HRDParameters m_hrdParameters;
bool m_vuiParametersPresentFlag;
VUI m_vuiParameters;
SPSRExt m_spsRangeExtension;
static const int m_winUnitX[NUM_CHROMA_FORMAT];
static const int m_winUnitY[NUM_CHROMA_FORMAT];
ProfileTierLevel m_profileTierLevel;
bool m_alfEnabledFlag;
bool m_wrapAroundEnabledFlag;
unsigned m_wrapAroundOffset;
unsigned m_IBCFlag;
#if JVET_O0119_BASE_PALETTE_444
unsigned m_PLTMode;
#endif
bool m_lumaReshapeEnable;
bool m_AMVREnabledFlag;
bool m_LMChroma;
bool m_cclmCollocatedChromaFlag;
bool m_MTS;
bool m_IntraMTS; // 18
bool m_InterMTS; // 19
bool m_LFNST;
bool m_SMVD;
bool m_Affine;
bool m_AffineType;
#if JVET_O0070_PROF
bool m_PROF;
#endif
bool m_GBi; //
bool m_MHIntra;
bool m_Triangle;
#if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET
bool m_LadfEnabled;
int m_LadfNumIntervals;
int m_LadfQpOffset[MAX_LADF_INTERVALS];
int m_LadfIntervalLowerBound[MAX_LADF_INTERVALS];
#endif
bool m_MIP;
#if JVET_O0650_SIGNAL_CHROMAQP_MAPPING_TABLE
ChromaQpMappingTable m_chromaQpMappingTable;
#endif
public:
SPS();
virtual ~SPS();
int getSPSId() const { return m_SPSId; }
void setSPSId(int i) { m_SPSId = i; }
void setDecodingParameterSetId(int val) { m_decodingParameterSetId = val; }
int getDecodingParameterSetId() const { return m_decodingParameterSetId; }
ChromaFormat getChromaFormatIdc () const { return m_chromaFormatIdc; }
void setChromaFormatIdc (ChromaFormat i) { m_chromaFormatIdc = i; }
static int getWinUnitX (int chromaFormatIdc) { CHECK(chromaFormatIdc < 0 || chromaFormatIdc >= NUM_CHROMA_FORMAT, "Invalid chroma format parameter"); return m_winUnitX[chromaFormatIdc]; }
static int getWinUnitY (int chromaFormatIdc) { CHECK(chromaFormatIdc < 0 || chromaFormatIdc >= NUM_CHROMA_FORMAT, "Invalid chroma format parameter"); return m_winUnitY[chromaFormatIdc]; }
// structure
void setPicWidthInLumaSamples( uint32_t u ) { m_picWidthInLumaSamples = u; }
uint32_t getPicWidthInLumaSamples() const { return m_picWidthInLumaSamples; }
void setPicHeightInLumaSamples( uint32_t u ) { m_picHeightInLumaSamples = u; }
uint32_t getPicHeightInLumaSamples() const { return m_picHeightInLumaSamples; }
Window& getConformanceWindow() { return m_conformanceWindow; }
const Window& getConformanceWindow() const { return m_conformanceWindow; }
void setConformanceWindow(Window& conformanceWindow ) { m_conformanceWindow = conformanceWindow; }
uint32_t getNumLongTermRefPicSPS() const { return m_numLongTermRefPicSPS; }
void setNumLongTermRefPicSPS(uint32_t val) { m_numLongTermRefPicSPS = val; }
uint32_t getLtRefPicPocLsbSps(uint32_t index) const { CHECK( index >= MAX_NUM_LONG_TERM_REF_PICS, "Index exceeds boundary" ); return m_ltRefPicPocLsbSps[index]; }
void setLtRefPicPocLsbSps(uint32_t index, uint32_t val) { CHECK( index >= MAX_NUM_LONG_TERM_REF_PICS, "Index exceeds boundary" ); m_ltRefPicPocLsbSps[index] = val; }
bool getUsedByCurrPicLtSPSFlag(int i) const { CHECK( i >= MAX_NUM_LONG_TERM_REF_PICS, "Index exceeds boundary" ); return m_usedByCurrPicLtSPSFlag[i]; }
void setUsedByCurrPicLtSPSFlag(int i, bool x) { CHECK( i >= MAX_NUM_LONG_TERM_REF_PICS, "Index exceeds boundary" ); m_usedByCurrPicLtSPSFlag[i] = x; }
int getLog2MinCodingBlockSize() const { return m_log2MinCodingBlockSize; }
void setLog2MinCodingBlockSize(int val) { m_log2MinCodingBlockSize = val; }
int getLog2DiffMaxMinCodingBlockSize() const { return m_log2DiffMaxMinCodingBlockSize; }
void setLog2DiffMaxMinCodingBlockSize(int val) { m_log2DiffMaxMinCodingBlockSize = val; }
void setCTUSize(unsigned ctuSize) { m_CTUSize = ctuSize; }
unsigned getCTUSize() const { return m_CTUSize; }
void setSplitConsOverrideEnabledFlag(bool b) { m_partitionOverrideEnalbed = b; }
bool getSplitConsOverrideEnabledFlag() const { return m_partitionOverrideEnalbed; }
void setMinQTSizes(unsigned* minQT) { m_minQT[0] = minQT[0]; m_minQT[1] = minQT[1]; m_minQT[2] = minQT[2]; }
unsigned getMinQTSize(SliceType slicetype,
ChannelType chType = CHANNEL_TYPE_LUMA)
const { return slicetype == I_SLICE ? (chType == CHANNEL_TYPE_LUMA ? m_minQT[0] : m_minQT[2]) : m_minQT[1]; }
void setMaxBTDepth(unsigned maxBTDepth,
unsigned maxBTDepthI,
unsigned maxBTDepthIChroma)
{ m_maxBTDepth[1] = maxBTDepth; m_maxBTDepth[0] = maxBTDepthI; m_maxBTDepth[2] = maxBTDepthIChroma; }
unsigned getMaxBTDepth() const { return m_maxBTDepth[1]; }
unsigned getMaxBTDepthI() const { return m_maxBTDepth[0]; }
unsigned getMaxBTDepthIChroma() const { return m_maxBTDepth[2]; }
void setMaxBTSize(unsigned maxBTSize,
unsigned maxBTSizeI,
unsigned maxBTSizeC)
{ m_maxBTSize[1] = maxBTSize; m_maxBTSize[0] = maxBTSizeI; m_maxBTSize[2] = maxBTSizeC; }
unsigned getMaxBTSize() const { return m_maxBTSize[1]; }
unsigned getMaxBTSizeI() const { return m_maxBTSize[0]; }
unsigned getMaxBTSizeIChroma() const { return m_maxBTSize[2]; }
void setMaxTTSize(unsigned maxTTSize,
unsigned maxTTSizeI,
unsigned maxTTSizeC)
{ m_maxTTSize[1] = maxTTSize; m_maxTTSize[0] = maxTTSizeI; m_maxTTSize[2] = maxTTSizeC; }
unsigned getMaxTTSize() const { return m_maxTTSize[1]; }
unsigned getMaxTTSizeI() const { return m_maxTTSize[0]; }
unsigned getMaxTTSizeIChroma() const { return m_maxTTSize[2]; }
void setIDRRefParamListPresent(bool b) { m_idrRefParamList = b; }
bool getIDRRefParamListPresent() const { return m_idrRefParamList; }
void setUseDualITree(bool b) { m_dualITree = b; }
bool getUseDualITree() const { return m_dualITree; }
void setMaxCUWidth( uint32_t u ) { m_uiMaxCUWidth = u; }
uint32_t getMaxCUWidth() const { return m_uiMaxCUWidth; }
void setMaxCUHeight( uint32_t u ) { m_uiMaxCUHeight = u; }
uint32_t getMaxCUHeight() const { return m_uiMaxCUHeight; }
void setMaxCodingDepth( uint32_t u ) { m_uiMaxCodingDepth = u; }
uint32_t getMaxCodingDepth() const { return m_uiMaxCodingDepth; }
void setPCMEnabledFlag( bool b ) { m_pcmEnabledFlag = b; }
bool getPCMEnabledFlag() const { return m_pcmEnabledFlag; }
void setPCMLog2MaxSize( uint32_t u ) { m_pcmLog2MaxSize = u; }
uint32_t getPCMLog2MaxSize() const { return m_pcmLog2MaxSize; }
void setPCMLog2MinSize( uint32_t u ) { m_uiPCMLog2MinSize = u; }
uint32_t getPCMLog2MinSize() const { return m_uiPCMLog2MinSize; }
#if JVET_O1136_TS_BDPCM_SIGNALLING
bool getTransformSkipEnabledFlag() const { return m_transformSkipEnabledFlag; }
void setTransformSkipEnabledFlag( bool b ) { m_transformSkipEnabledFlag = b; }
bool getBDPCMEnabledFlag() const { return m_BDPCMEnabledFlag; }
void setBDPCMEnabledFlag( bool b ) { m_BDPCMEnabledFlag = b; }
#endif
void setBitsForPOC( uint32_t u ) { m_uiBitsForPOC = u; }
uint32_t getBitsForPOC() const { return m_uiBitsForPOC; }
void setNumReorderPics(int i, uint32_t tlayer) { m_numReorderPics[tlayer] = i; }
int getNumReorderPics(uint32_t tlayer) const { return m_numReorderPics[tlayer]; }
void createRPLList0(int numRPL);
void createRPLList1(int numRPL);
const RPLList* getRPLList0() const { return &m_RPLList0; }
RPLList* getRPLList0() { return &m_RPLList0; }
const RPLList* getRPLList1() const { return &m_RPLList1; }
RPLList* getRPLList1() { return &m_RPLList1; }
uint32_t getNumRPL0() const { return m_numRPL0; }
uint32_t getNumRPL1() const { return m_numRPL1; }
void setRPL1CopyFromRPL0Flag(bool isCopy) { m_rpl1CopyFromRpl0Flag = isCopy; }
bool getRPL1CopyFromRPL0Flag() const { return m_rpl1CopyFromRpl0Flag; }
bool getRPL1IdxPresentFlag() const { return m_rpl1IdxPresentFlag; }
void setAllActiveRplEntriesHasSameSignFlag(bool isAllSame) { m_allRplEntriesHasSameSignFlag = isAllSame; }
bool getAllActiveRplEntriesHasSameSignFlag() const { return m_allRplEntriesHasSameSignFlag; }
bool getLongTermRefsPresent() const { return m_bLongTermRefsPresent; }
void setLongTermRefsPresent(bool b) { m_bLongTermRefsPresent=b; }
bool getSPSTemporalMVPEnabledFlag() const { return m_SPSTemporalMVPEnabledFlag; }
void setSPSTemporalMVPEnabledFlag(bool b) { m_SPSTemporalMVPEnabledFlag=b; }
#if MAX_TB_SIZE_SIGNALLING
void setLog2MaxTbSize( uint32_t u ) { m_log2MaxTbSize = u; }
uint32_t getLog2MaxTbSize() const { return m_log2MaxTbSize; }
uint32_t getMaxTbSize() const { return 1 << m_log2MaxTbSize; }
#endif
// Bit-depth
int getBitDepth(ChannelType type) const { return m_bitDepths.recon[type]; }
void setBitDepth(ChannelType type, int u ) { m_bitDepths.recon[type] = u; }
const BitDepths& getBitDepths() const { return m_bitDepths; }
int getMaxLog2TrDynamicRange(ChannelType channelType) const { return getSpsRangeExtension().getExtendedPrecisionProcessingFlag() ? std::max<int>(15, int(m_bitDepths.recon[channelType] + 6)) : 15; }
int getDifferentialLumaChromaBitDepth() const { return int(m_bitDepths.recon[CHANNEL_TYPE_LUMA]) - int(m_bitDepths.recon[CHANNEL_TYPE_CHROMA]); }
int getQpBDOffset(ChannelType type) const { return m_qpBDOffset[type]; }
void setQpBDOffset(ChannelType type, int i) { m_qpBDOffset[type] = i; }
#if JVET_O0919_TS_MIN_QP
int getMinQpPrimeTsMinus4(ChannelType type) const { return m_minQpMinus4[type]; }
void setMinQpPrimeTsMinus4(ChannelType type, int i) { m_minQpMinus4[type] = i; }
#endif
void setSAOEnabledFlag(bool bVal) { m_saoEnabledFlag = bVal; }
bool getSAOEnabledFlag() const { return m_saoEnabledFlag; }
bool getALFEnabledFlag() const { return m_alfEnabledFlag; }
void setALFEnabledFlag( bool b ) { m_alfEnabledFlag = b; }
#if JVET_O0376_SPS_JOINTCBCR_FLAG
void setJointCbCrEnabledFlag(bool bVal) { m_JointCbCrEnabledFlag = bVal; }
bool getJointCbCrEnabledFlag() const { return m_JointCbCrEnabledFlag; }
#endif
bool getSBTMVPEnabledFlag() const { return m_sbtmvpEnabledFlag; }
void setSBTMVPEnabledFlag(bool b) { m_sbtmvpEnabledFlag = b; }
void setBDOFEnabledFlag(bool b) { m_bdofEnabledFlag = b; }
bool getBDOFEnabledFlag() const { return m_bdofEnabledFlag; }
bool getFpelMmvdEnabledFlag() const { return m_fpelMmvdEnabledFlag; }
void setFpelMmvdEnabledFlag( bool b ) { m_fpelMmvdEnabledFlag = b; }
bool getUseDMVR()const { return m_DMVR; }
void setUseDMVR(bool b) { m_DMVR = b; }
bool getUseMMVD()const { return m_MMVD; }
void setUseMMVD(bool b) { m_MMVD = b; }
#if JVET_O1140_SLICE_DISABLE_BDOF_DMVR_FLAG
bool getBdofDmvrSlicePresentFlag()const { return m_BdofDmvrSlicePresentFlag; }
void setBdofDmvrSlicePresentFlag(bool b) { m_BdofDmvrSlicePresentFlag = b; }
#endif
uint32_t getMaxTLayers() const { return m_uiMaxTLayers; }
void setMaxTLayers( uint32_t uiMaxTLayers ) { CHECK( uiMaxTLayers > MAX_TLAYER, "Invalid number T-layers" ); m_uiMaxTLayers = uiMaxTLayers; }
bool getTemporalIdNestingFlag() const { return m_bTemporalIdNestingFlag; }
void setTemporalIdNestingFlag( bool bValue ) { m_bTemporalIdNestingFlag = bValue; }
uint32_t getPCMBitDepth(ChannelType type) const { return m_pcmBitDepths[type]; }
void setPCMBitDepth(ChannelType type, uint32_t u) { m_pcmBitDepths[type] = u; }
void setPCMFilterDisableFlag( bool bValue ) { m_bPCMFilterDisableFlag = bValue; }
bool getPCMFilterDisableFlag() const { return m_bPCMFilterDisableFlag; }
bool getScalingListFlag() const { return m_scalingListEnabledFlag; }
void setScalingListFlag( bool b ) { m_scalingListEnabledFlag = b; }
bool getScalingListPresentFlag() const { return m_scalingListPresentFlag; }
void setScalingListPresentFlag( bool b ) { m_scalingListPresentFlag = b; }
ScalingList& getScalingList() { return m_scalingList; }
const ScalingList& getScalingList() const { return m_scalingList; }
uint32_t getMaxDecPicBuffering(uint32_t tlayer) const { return m_uiMaxDecPicBuffering[tlayer]; }
void setMaxDecPicBuffering( uint32_t ui, uint32_t tlayer ) { CHECK(tlayer >= MAX_TLAYER, "Invalid T-layer"); m_uiMaxDecPicBuffering[tlayer] = ui; }
uint32_t getMaxLatencyIncreasePlus1(uint32_t tlayer) const { return m_uiMaxLatencyIncreasePlus1[tlayer]; }
void setMaxLatencyIncreasePlus1( uint32_t ui , uint32_t tlayer) { m_uiMaxLatencyIncreasePlus1[tlayer] = ui; }
void setAffineAmvrEnabledFlag( bool val ) { m_affineAmvrEnabledFlag = val; }
bool getAffineAmvrEnabledFlag() const { return m_affineAmvrEnabledFlag; }
TimingInfo* getTimingInfo() { return &m_timingInfo; }
const TimingInfo* getTimingInfo() const { return &m_timingInfo; }
bool getHrdParametersPresentFlag() const { return m_hrdParametersPresentFlag; }
void setHrdParametersPresentFlag(bool b) { m_hrdParametersPresentFlag = b; }
HRDParameters* getHrdParameters() { return &m_hrdParameters; }
const HRDParameters* getHrdParameters() const { return &m_hrdParameters; }
bool getVuiParametersPresentFlag() const { return m_vuiParametersPresentFlag; }
void setVuiParametersPresentFlag(bool b) { m_vuiParametersPresentFlag = b; }
VUI* getVuiParameters() { return &m_vuiParameters; }
const VUI* getVuiParameters() const { return &m_vuiParameters; }
const ProfileTierLevel* getProfileTierLevel() const { return &m_profileTierLevel; }
ProfileTierLevel* getProfileTierLevel() { return &m_profileTierLevel; }
const SPSRExt& getSpsRangeExtension() const { return m_spsRangeExtension; }
SPSRExt& getSpsRangeExtension() { return m_spsRangeExtension; }
void setWrapAroundEnabledFlag(bool b) { m_wrapAroundEnabledFlag = b; }
bool getWrapAroundEnabledFlag() const { return m_wrapAroundEnabledFlag; }
void setWrapAroundOffset(unsigned offset) { m_wrapAroundOffset = offset; }
unsigned getWrapAroundOffset() const { return m_wrapAroundOffset; }
void setUseReshaper(bool b) { m_lumaReshapeEnable = b; }
bool getUseReshaper() const { return m_lumaReshapeEnable; }
void setIBCFlag(unsigned IBCFlag) { m_IBCFlag = IBCFlag; }
unsigned getIBCFlag() const { return m_IBCFlag; }
#if JVET_O0119_BASE_PALETTE_444
void setPLTMode(unsigned PLTMode) { m_PLTMode = PLTMode; }
unsigned getPLTMode() const { return m_PLTMode; }
#endif
void setUseSBT( bool b ) { m_SBT = b; }
bool getUseSBT() const { return m_SBT; }
void setUseISP( bool b ) { m_ISP = b; }
bool getUseISP() const { return m_ISP; }
void setMaxSbtSize( uint8_t val ) { m_MaxSbtSize = val; }
uint8_t getMaxSbtSize() const { return m_MaxSbtSize; }
void setAMVREnabledFlag ( bool b ) { m_AMVREnabledFlag = b; }
bool getAMVREnabledFlag () const { return m_AMVREnabledFlag; }
void setUseAffine ( bool b ) { m_Affine = b; }
bool getUseAffine () const { return m_Affine; }
void setUseAffineType ( bool b ) { m_AffineType = b; }
bool getUseAffineType () const { return m_AffineType; }
#if JVET_O0070_PROF
void setUsePROF ( bool b ) { m_PROF = b; }
bool getUsePROF () const { return m_PROF; }
#endif
void setUseLMChroma ( bool b ) { m_LMChroma = b; }
bool getUseLMChroma () const { return m_LMChroma; }
void setCclmCollocatedChromaFlag( bool b ) { m_cclmCollocatedChromaFlag = b; }
bool getCclmCollocatedChromaFlag() const { return m_cclmCollocatedChromaFlag; }
void setUseMTS ( bool b ) { m_MTS = b; }
bool getUseMTS () const { return m_MTS; }
#if JVET_O0541_IMPLICIT_MTS_CONDITION
bool getUseImplicitMTS () const { return m_MTS && !m_IntraMTS; }
#else
bool getUseImplicitMTS () const { return m_MTS && !m_IntraMTS && !m_InterMTS; }
#endif
void setUseIntraMTS ( bool b ) { m_IntraMTS = b; }
bool getUseIntraMTS () const { return m_IntraMTS; }
void setUseInterMTS ( bool b ) { m_InterMTS = b; }
bool getUseInterMTS () const { return m_InterMTS; }
void setUseLFNST ( bool b ) { m_LFNST = b; }
bool getUseLFNST () const { return m_LFNST; }
void setUseSMVD(bool b) { m_SMVD = b; }
bool getUseSMVD() const { return m_SMVD; }
void setUseGBi ( bool b ) { m_GBi = b; }
bool getUseGBi () const { return m_GBi; }
#if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET
void setLadfEnabled ( bool b ) { m_LadfEnabled = b; }
bool getLadfEnabled () const { return m_LadfEnabled; }
void setLadfNumIntervals ( int i ) { m_LadfNumIntervals = i; }
int getLadfNumIntervals () const { return m_LadfNumIntervals; }
void setLadfQpOffset ( int value, int idx ) { m_LadfQpOffset[ idx ] = value; }
int getLadfQpOffset ( int idx ) const { return m_LadfQpOffset[ idx ]; }
void setLadfIntervalLowerBound( int value, int idx ) { m_LadfIntervalLowerBound[ idx ] = value; }
int getLadfIntervalLowerBound( int idx ) const { return m_LadfIntervalLowerBound[ idx ]; }
#endif
void setUseMHIntra ( bool b ) { m_MHIntra = b; }
bool getUseMHIntra () const { return m_MHIntra; }
void setUseTriangle ( bool b ) { m_Triangle = b; }
bool getUseTriangle () const { return m_Triangle; }
void setUseMIP ( bool b ) { m_MIP = b; }
bool getUseMIP () const { return m_MIP; }
#if JVET_O0244_DELTA_POC
bool getUseWP () const { return m_useWeightPred; }
bool getUseWPBiPred () const { return m_useWeightedBiPred; }
void setUseWP ( bool b ) { m_useWeightPred = b; }
void setUseWPBiPred ( bool b ) { m_useWeightedBiPred = b; }
#endif
#if JVET_O0650_SIGNAL_CHROMAQP_MAPPING_TABLE
void setChromaQpMappingTableFromParams(const ChromaQpMappingTableParams ¶ms, const int qpBdOffset) { m_chromaQpMappingTable.setParams(params, qpBdOffset); }
void derivedChromaQPMappingTables() { m_chromaQpMappingTable.derivedChromaQPMappingTables(); }
const ChromaQpMappingTable& getChromaQpMappingTable() const { return m_chromaQpMappingTable;}
int getMappedChromaQpValue(ComponentID compID, int qpVal) const { return m_chromaQpMappingTable.getMappedChromaQpValue(compID, qpVal); }
#endif
};
/// Reference Picture Lists class
/// PPS RExt class
class PPSRExt // Names aligned to text specification
{
private:
int m_log2MaxTransformSkipBlockSize;
bool m_crossComponentPredictionEnabledFlag;
// Chroma QP Adjustments
int m_cuChromaQpOffsetSubdiv;
int m_chromaQpOffsetListLen; // size (excludes the null entry used in the following array).
ChromaQpAdj m_ChromaQpAdjTableIncludingNullEntry[1+MAX_QP_OFFSET_LIST_SIZE]; //!< Array includes entry [0] for the null offset used when cu_chroma_qp_offset_flag=0, and entries [cu_chroma_qp_offset_idx+1...] otherwise
uint32_t m_log2SaoOffsetScale[MAX_NUM_CHANNEL_TYPE];
public:
PPSRExt();
bool settingsDifferFromDefaults(const bool bTransformSkipEnabledFlag) const
{
return (bTransformSkipEnabledFlag && (getLog2MaxTransformSkipBlockSize() !=2))
|| (getCrossComponentPredictionEnabledFlag() )
|| (getChromaQpOffsetListEnabledFlag() )
|| (getLog2SaoOffsetScale(CHANNEL_TYPE_LUMA) !=0 )
|| (getLog2SaoOffsetScale(CHANNEL_TYPE_CHROMA) !=0 );
}
uint32_t getLog2MaxTransformSkipBlockSize() const { return m_log2MaxTransformSkipBlockSize; }
void setLog2MaxTransformSkipBlockSize( uint32_t u ) { m_log2MaxTransformSkipBlockSize = u; }
bool getCrossComponentPredictionEnabledFlag() const { return m_crossComponentPredictionEnabledFlag; }
void setCrossComponentPredictionEnabledFlag(bool value) { m_crossComponentPredictionEnabledFlag = value; }
void clearChromaQpOffsetList() { m_chromaQpOffsetListLen = 0; }
uint32_t getCuChromaQpOffsetSubdiv () const { return m_cuChromaQpOffsetSubdiv; }
void setCuChromaQpOffsetSubdiv ( uint32_t u ) { m_cuChromaQpOffsetSubdiv = u; }
bool getChromaQpOffsetListEnabledFlag() const { return getChromaQpOffsetListLen()>0; }
int getChromaQpOffsetListLen() const { return m_chromaQpOffsetListLen; }
const ChromaQpAdj& getChromaQpOffsetListEntry( int cuChromaQpOffsetIdxPlus1 ) const
{
CHECK(cuChromaQpOffsetIdxPlus1 >= m_chromaQpOffsetListLen+1, "Invalid chroma QP offset");
return m_ChromaQpAdjTableIncludingNullEntry[cuChromaQpOffsetIdxPlus1]; // Array includes entry [0] for the null offset used when cu_chroma_qp_offset_flag=0, and entries [cu_chroma_qp_offset_idx+1...] otherwise
}
#if JVET_O1168_CU_CHROMA_QP_OFFSET
void setChromaQpOffsetListEntry( int cuChromaQpOffsetIdxPlus1, int cbOffset, int crOffset, int jointCbCrOffset )
#else
void setChromaQpOffsetListEntry( int cuChromaQpOffsetIdxPlus1, int cbOffset, int crOffset )
#endif
{
CHECK(cuChromaQpOffsetIdxPlus1 == 0 || cuChromaQpOffsetIdxPlus1 > MAX_QP_OFFSET_LIST_SIZE, "Invalid chroma QP offset");
m_ChromaQpAdjTableIncludingNullEntry[cuChromaQpOffsetIdxPlus1].u.comp.CbOffset = cbOffset; // Array includes entry [0] for the null offset used when cu_chroma_qp_offset_flag=0, and entries [cu_chroma_qp_offset_idx+1...] otherwise
m_ChromaQpAdjTableIncludingNullEntry[cuChromaQpOffsetIdxPlus1].u.comp.CrOffset = crOffset;
#if JVET_O1168_CU_CHROMA_QP_OFFSET
m_ChromaQpAdjTableIncludingNullEntry[cuChromaQpOffsetIdxPlus1].u.comp.JointCbCrOffset = jointCbCrOffset;
#endif
m_chromaQpOffsetListLen = std::max(m_chromaQpOffsetListLen, cuChromaQpOffsetIdxPlus1);
}
// Now: getPpsRangeExtension().getLog2SaoOffsetScale and getPpsRangeExtension().setLog2SaoOffsetScale
uint32_t getLog2SaoOffsetScale(ChannelType type) const { return m_log2SaoOffsetScale[type]; }
void setLog2SaoOffsetScale(ChannelType type, uint32_t uiBitShift) { m_log2SaoOffsetScale[type] = uiBitShift; }
};
/// PPS class
class PPS
{
private:
int m_PPSId; // pic_parameter_set_id
int m_SPSId; // seq_parameter_set_id
int m_picInitQPMinus26;
bool m_useDQP;
bool m_bConstrainedIntraPred; // constrained_intra_pred_flag
bool m_bSliceChromaQpFlag; // slicelevel_chroma_qp_flag
// access channel
uint32_t m_cuQpDeltaSubdiv; // cu_qp_delta_subdiv
int m_chromaCbQpOffset;
int m_chromaCrQpOffset;
int m_chromaCbCrQpOffset;
uint32_t m_numRefIdxL0DefaultActive;
uint32_t m_numRefIdxL1DefaultActive;
bool m_rpl1IdxPresentFlag;
bool m_bUseWeightPred; //!< Use of Weighting Prediction (P_SLICE)
bool m_useWeightedBiPred; //!< Use of Weighting Bi-Prediction (B_SLICE)
bool m_OutputFlagPresentFlag; //!< Indicates the presence of output_flag in slice header
bool m_TransquantBypassEnabledFlag; //!< Indicates presence of cu_transquant_bypass_flag in CUs.
#if !JVET_O1136_TS_BDPCM_SIGNALLING
bool m_useTransformSkip;
#endif
bool m_entropyCodingSyncEnabledFlag; //!< Indicates the presence of wavefronts
bool m_loopFilterAcrossBricksEnabledFlag;
bool m_uniformTileSpacingFlag;
int m_numTileColumnsMinus1;
int m_numTileRowsMinus1;
std::vector<int> m_tileColumnWidth;
std::vector<int> m_tileRowHeight;
bool m_singleTileInPicFlag;
int m_tileColsWidthMinus1;
int m_tileRowsHeightMinus1;
bool m_brickSplittingPresentFlag;
std::vector<bool> m_brickSplitFlag;
std::vector<bool> m_uniformBrickSpacingFlag;
std::vector<int> m_brickHeightMinus1;
std::vector<int> m_numBrickRowsMinus1;
std::vector<std::vector<int>> m_brickRowHeightMinus1;
bool m_singleBrickPerSliceFlag;
bool m_rectSliceFlag;
int m_numSlicesInPicMinus1;
std::vector<int> m_topLeftBrickIdx;
std::vector<int> m_bottomRightBrickIdx;
int m_numTilesInPic;
int m_numBricksInPic;
bool m_signalledSliceIdFlag;
int m_signalledSliceIdLengthMinus1;
std::vector<int> m_sliceId;
bool m_cabacInitPresentFlag;
bool m_sliceHeaderExtensionPresentFlag;
bool m_loopFilterAcrossSlicesEnabledFlag;
bool m_deblockingFilterControlPresentFlag;
bool m_deblockingFilterOverrideEnabledFlag;
bool m_ppsDeblockingFilterDisabledFlag;
int m_deblockingFilterBetaOffsetDiv2; //< beta offset for deblocking filter
int m_deblockingFilterTcOffsetDiv2; //< tc offset for deblocking filter
bool m_scalingListPresentFlag;
ScalingList m_scalingList; //!< ScalingList class
bool m_listsModificationPresentFlag;
uint32_t m_log2ParallelMergeLevelMinus2;
int m_numExtraSliceHeaderBits;
bool m_loopFilterAcrossVirtualBoundariesDisabledFlag;
unsigned m_numVerVirtualBoundaries;
unsigned m_numHorVirtualBoundaries;
unsigned m_virtualBoundariesPosX[3];
unsigned m_virtualBoundariesPosY[3];
PPSRExt m_ppsRangeExtension;
public:
PreCalcValues *pcv;
public:
PPS();
virtual ~PPS();
int getPPSId() const { return m_PPSId; }
void setPPSId(int i) { m_PPSId = i; }
int getSPSId() const { return m_SPSId; }
void setSPSId(int i) { m_SPSId = i; }
int getPicInitQPMinus26() const { return m_picInitQPMinus26; }
void setPicInitQPMinus26( int i ) { m_picInitQPMinus26 = i; }
bool getUseDQP() const { return m_useDQP; }
void setUseDQP( bool b ) { m_useDQP = b; }
bool getConstrainedIntraPred() const { return m_bConstrainedIntraPred; }
void setConstrainedIntraPred( bool b ) { m_bConstrainedIntraPred = b; }
bool getSliceChromaQpFlag() const { return m_bSliceChromaQpFlag; }
void setSliceChromaQpFlag( bool b ) { m_bSliceChromaQpFlag = b; }
void setCuQpDeltaSubdiv( uint32_t u ) { m_cuQpDeltaSubdiv = u; }
uint32_t getCuQpDeltaSubdiv() const { return m_cuQpDeltaSubdiv; }
void setQpOffset(ComponentID compID, int i )
{
if (compID==COMPONENT_Cb)
{
m_chromaCbQpOffset = i;
}
else if (compID==COMPONENT_Cr)
{
m_chromaCrQpOffset = i;
}
else if (compID==JOINT_CbCr)
{
m_chromaCbCrQpOffset = i;
}
else
{
THROW( "Invalid chroma QP offset" );
}
}
int getQpOffset(ComponentID compID) const
{
return (compID==COMPONENT_Y) ? 0 : (compID==COMPONENT_Cb ? m_chromaCbQpOffset : compID==COMPONENT_Cr ? m_chromaCrQpOffset : m_chromaCbCrQpOffset );
}
void setNumRefIdxL0DefaultActive(uint32_t ui) { m_numRefIdxL0DefaultActive=ui; }
uint32_t getNumRefIdxL0DefaultActive() const { return m_numRefIdxL0DefaultActive; }
void setNumRefIdxL1DefaultActive(uint32_t ui) { m_numRefIdxL1DefaultActive=ui; }
uint32_t getNumRefIdxL1DefaultActive() const { return m_numRefIdxL1DefaultActive; }
void setRpl1IdxPresentFlag(bool isPresent) { m_rpl1IdxPresentFlag = isPresent; }
uint32_t getRpl1IdxPresentFlag() const { return m_rpl1IdxPresentFlag; }
bool getUseWP() const { return m_bUseWeightPred; }
bool getWPBiPred() const { return m_useWeightedBiPred; }
void setUseWP( bool b ) { m_bUseWeightPred = b; }
void setWPBiPred( bool b ) { m_useWeightedBiPred = b; }
void setOutputFlagPresentFlag( bool b ) { m_OutputFlagPresentFlag = b; }
bool getOutputFlagPresentFlag() const { return m_OutputFlagPresentFlag; }
void setTransquantBypassEnabledFlag( bool b ) { m_TransquantBypassEnabledFlag = b; }
bool getTransquantBypassEnabledFlag() const { return m_TransquantBypassEnabledFlag; }
#if !JVET_O1136_TS_BDPCM_SIGNALLING
bool getUseTransformSkip() const { return m_useTransformSkip; }
void setUseTransformSkip( bool b ) { m_useTransformSkip = b; }
#endif
void setLoopFilterAcrossBricksEnabledFlag(bool b) { m_loopFilterAcrossBricksEnabledFlag = b; }
bool getLoopFilterAcrossBricksEnabledFlag() const { return m_loopFilterAcrossBricksEnabledFlag; }
bool getEntropyCodingSyncEnabledFlag() const { return m_entropyCodingSyncEnabledFlag; }
void setEntropyCodingSyncEnabledFlag(bool val) { m_entropyCodingSyncEnabledFlag = val; }
void setUniformTileSpacingFlag(bool b) { m_uniformTileSpacingFlag = b; }
bool getUniformTileSpacingFlag() const { return m_uniformTileSpacingFlag; }
void setNumTileColumnsMinus1(int i) { m_numTileColumnsMinus1 = i; }
int getNumTileColumnsMinus1() const { return m_numTileColumnsMinus1; }
void setTileColumnWidth(const std::vector<int>& columnWidth ) { m_tileColumnWidth = columnWidth; }
uint32_t getTileColumnWidth(uint32_t columnIdx) const { return m_tileColumnWidth[columnIdx]; }
void setNumTileRowsMinus1(int i) { m_numTileRowsMinus1 = i; }
int getNumTileRowsMinus1() const { return m_numTileRowsMinus1; }
void setTileRowHeight(const std::vector<int>& rowHeight) { m_tileRowHeight = rowHeight; }
uint32_t getTileRowHeight(uint32_t rowIdx) const { return m_tileRowHeight[rowIdx]; }
bool getSingleTileInPicFlag() const { return m_singleTileInPicFlag; }
void setSingleTileInPicFlag(bool val) { m_singleTileInPicFlag = val; }
int getTileColsWidthMinus1() const { return m_tileColsWidthMinus1; }
void setTileColsWidthMinus1(int w) { m_tileColsWidthMinus1 = w; }
int getTileRowsHeightMinus1() const { return m_tileRowsHeightMinus1; }
void setTileRowsHeightMinus1(int h) { m_tileRowsHeightMinus1 = h; }
bool getBrickSplittingPresentFlag() const { return m_brickSplittingPresentFlag; }
void setBrickSplittingPresentFlag(bool b) { m_brickSplittingPresentFlag = b; }
bool getBrickSplitFlag(int i) const { return m_brickSplitFlag[i]; }
void setBrickSplitFlag(std::vector<bool>& val) { m_brickSplitFlag = val; }
bool getUniformBrickSpacingFlag(int i) const { return m_uniformBrickSpacingFlag[i]; }
void setUniformBrickSpacingFlag(std::vector<bool>& val) { m_uniformBrickSpacingFlag = val; }
int getBrickHeightMinus1(int i) const { return m_brickHeightMinus1[i]; }
void setBrickHeightMinus1(std::vector<int>& val) { m_brickHeightMinus1 = val; }
int getNumBrickRowsMinus1(int i) const { return m_numBrickRowsMinus1[i]; }
void setNumBrickRowsMinus1(std::vector<int>& val) { m_numBrickRowsMinus1 = val; }
int getBrickRowHeightMinus1(int i, int j) const { return m_brickRowHeightMinus1[i][j]; }
void setBrickRowHeightMinus1(std::vector<std::vector<int>>& val) { m_brickRowHeightMinus1 = val; }
bool getSingleBrickPerSliceFlag() const { return m_singleBrickPerSliceFlag; }
void setSingleBrickPerSliceFlag(bool val) { m_singleBrickPerSliceFlag = val; }
bool getRectSliceFlag() const { return m_rectSliceFlag; }
void setRectSliceFlag(bool val) { m_rectSliceFlag = val; }
int getNumSlicesInPicMinus1() const { return m_numSlicesInPicMinus1; }
void setNumSlicesInPicMinus1(int val) { m_numSlicesInPicMinus1 = val; }
int getTopLeftBrickIdx(uint32_t columnIdx) const { return m_topLeftBrickIdx[columnIdx]; }
void setTopLeftBrickIdx(const std::vector<int>& val) { m_topLeftBrickIdx = val; }
int getBottomRightBrickIdx(uint32_t columnIdx) const { return m_bottomRightBrickIdx[columnIdx]; }
void setBottomRightBrickIdx(const std::vector<int>& val) { m_bottomRightBrickIdx = val; }
int getNumTilesInPic() const { return m_numTilesInPic; }
void setNumTilesInPic(int val) { m_numTilesInPic = val; }
int getNumBricksInPic() const { return m_numBricksInPic; }
void setNumBricksInPic(int val) { m_numBricksInPic = val; }
bool getSignalledSliceIdFlag() const { return m_signalledSliceIdFlag; }
void setSignalledSliceIdFlag(bool val) { m_signalledSliceIdFlag = val; }
int getSignalledSliceIdLengthMinus1() const { return m_signalledSliceIdLengthMinus1; }
void setSignalledSliceIdLengthMinus1(int val) { m_signalledSliceIdLengthMinus1 = val; }
int getSliceId(uint32_t columnIdx) const { return m_sliceId[columnIdx]; }
void setSliceId(const std::vector<int>& val) { m_sliceId = val; }
void setCabacInitPresentFlag( bool flag ) { m_cabacInitPresentFlag = flag; }
bool getCabacInitPresentFlag() const { return m_cabacInitPresentFlag; }
void setDeblockingFilterControlPresentFlag( bool val ) { m_deblockingFilterControlPresentFlag = val; }
bool getDeblockingFilterControlPresentFlag() const { return m_deblockingFilterControlPresentFlag; }
void setDeblockingFilterOverrideEnabledFlag( bool val ) { m_deblockingFilterOverrideEnabledFlag = val; }
bool getDeblockingFilterOverrideEnabledFlag() const { return m_deblockingFilterOverrideEnabledFlag; }
void setPPSDeblockingFilterDisabledFlag(bool val) { m_ppsDeblockingFilterDisabledFlag = val; } //!< set offset for deblocking filter disabled
bool getPPSDeblockingFilterDisabledFlag() const { return m_ppsDeblockingFilterDisabledFlag; } //!< get offset for deblocking filter disabled
void setDeblockingFilterBetaOffsetDiv2(int val) { m_deblockingFilterBetaOffsetDiv2 = val; } //!< set beta offset for deblocking filter
int getDeblockingFilterBetaOffsetDiv2() const { return m_deblockingFilterBetaOffsetDiv2; } //!< get beta offset for deblocking filter
void setDeblockingFilterTcOffsetDiv2(int val) { m_deblockingFilterTcOffsetDiv2 = val; } //!< set tc offset for deblocking filter
int getDeblockingFilterTcOffsetDiv2() const { return m_deblockingFilterTcOffsetDiv2; } //!< get tc offset for deblocking filter
bool getScalingListPresentFlag() const { return m_scalingListPresentFlag; }
void setScalingListPresentFlag( bool b ) { m_scalingListPresentFlag = b; }
ScalingList& getScalingList() { return m_scalingList; }
const ScalingList& getScalingList() const { return m_scalingList; }
bool getListsModificationPresentFlag() const { return m_listsModificationPresentFlag; }
void setListsModificationPresentFlag( bool b ) { m_listsModificationPresentFlag = b; }
uint32_t getLog2ParallelMergeLevelMinus2() const { return m_log2ParallelMergeLevelMinus2; }
void setLog2ParallelMergeLevelMinus2(uint32_t mrgLevel) { m_log2ParallelMergeLevelMinus2 = mrgLevel; }
int getNumExtraSliceHeaderBits() const { return m_numExtraSliceHeaderBits; }
void setNumExtraSliceHeaderBits(int i) { m_numExtraSliceHeaderBits = i; }
void setLoopFilterAcrossSlicesEnabledFlag( bool bValue ) { m_loopFilterAcrossSlicesEnabledFlag = bValue; }
bool getLoopFilterAcrossSlicesEnabledFlag() const { return m_loopFilterAcrossSlicesEnabledFlag; }
bool getSliceHeaderExtensionPresentFlag() const { return m_sliceHeaderExtensionPresentFlag; }
void setSliceHeaderExtensionPresentFlag(bool val) { m_sliceHeaderExtensionPresentFlag = val; }
void setLoopFilterAcrossVirtualBoundariesDisabledFlag(bool b) { m_loopFilterAcrossVirtualBoundariesDisabledFlag = b; }
bool getLoopFilterAcrossVirtualBoundariesDisabledFlag() const { return m_loopFilterAcrossVirtualBoundariesDisabledFlag; }
void setNumVerVirtualBoundaries(unsigned u) { m_numVerVirtualBoundaries = u; }
unsigned getNumVerVirtualBoundaries() const { return m_numVerVirtualBoundaries; }
void setNumHorVirtualBoundaries(unsigned u) { m_numHorVirtualBoundaries = u; }
unsigned getNumHorVirtualBoundaries() const { return m_numHorVirtualBoundaries; }
void setVirtualBoundariesPosX(unsigned u, unsigned idx) { m_virtualBoundariesPosX[idx] = u; }
unsigned getVirtualBoundariesPosX(unsigned idx) const { return m_virtualBoundariesPosX[idx]; }
void setVirtualBoundariesPosY(unsigned u, unsigned idx) { m_virtualBoundariesPosY[idx] = u; }
unsigned getVirtualBoundariesPosY(unsigned idx) const { return m_virtualBoundariesPosY[idx]; }
const PPSRExt& getPpsRangeExtension() const { return m_ppsRangeExtension; }
PPSRExt& getPpsRangeExtension() { return m_ppsRangeExtension; }
};
class APS
{
private:
int m_APSId; // adaptation_parameter_set_id
int m_APSType; // aps_params_type
AlfParam m_alfAPSParam;
SliceReshapeInfo m_reshapeAPSInfo;
public:
APS();
virtual ~APS();
int getAPSId() const { return m_APSId; }
void setAPSId(int i) { m_APSId = i; }
int getAPSType() const { return m_APSType; }
void setAPSType(int type) { m_APSType = type; }
void setAlfAPSParam(AlfParam& alfAPSParam) { m_alfAPSParam = alfAPSParam; }
void setTemporalId(int i) { m_alfAPSParam.tLayer = i; }
int getTemporalId() { return m_alfAPSParam.tLayer; }
AlfParam& getAlfAPSParam() { return m_alfAPSParam; }
void setReshaperAPSInfo(SliceReshapeInfo& reshapeAPSInfo) { m_reshapeAPSInfo = reshapeAPSInfo; }
SliceReshapeInfo& getReshaperAPSInfo() { return m_reshapeAPSInfo; }
};
struct WPScalingParam
{
// Explicit weighted prediction parameters parsed in slice header,
// or Implicit weighted prediction parameters (8 bits depth values).
bool bPresentFlag;
uint32_t uiLog2WeightDenom;
int iWeight;
int iOffset;
// Weighted prediction scaling values built from above parameters (bitdepth scaled):
int w;
int o;
int offset;
int shift;
int round;
};
struct WPACDCParam
{
int64_t iAC;
int64_t iDC;
};
/// slice header class
class Slice
{
private:
// Bitstream writing
bool m_saoEnabledFlag[MAX_NUM_CHANNEL_TYPE];
int m_iPPSId; ///< picture parameter set ID
bool m_PicOutputFlag; ///< pic_output_flag
int m_iPOC;
int m_iLastIDR;
int m_iAssociatedIRAP;
NalUnitType m_iAssociatedIRAPType;
const ReferencePictureList* m_pRPL0; //< pointer to RPL for L0, either in the SPS or the local RPS in the same slice header
const ReferencePictureList* m_pRPL1; //< pointer to RPL for L1, either in the SPS or the local RPS in the same slice header
ReferencePictureList m_localRPL0; //< RPL for L0 when present in slice header
ReferencePictureList m_localRPL1; //< RPL for L1 when present in slice header
int m_rpl0Idx; //< index of used RPL in the SPS or -1 for local RPL in the slice header
int m_rpl1Idx; //< index of used RPL in the SPS or -1 for local RPL in the slice header
NalUnitType m_eNalUnitType; ///< Nal unit type for the slice
SliceType m_eSliceType;
int m_iSliceQp;
int m_iSliceQpBase;
bool m_ChromaQpAdjEnabled;
bool m_deblockingFilterDisable;
bool m_deblockingFilterOverrideFlag; //< offsets for deblocking filter inherit from PPS
int m_deblockingFilterBetaOffsetDiv2; //< beta offset for deblocking filter
int m_deblockingFilterTcOffsetDiv2; //< tc offset for deblocking filter
int m_list1IdxToList0Idx[MAX_NUM_REF];
int m_aiNumRefIdx [NUM_REF_PIC_LIST_01]; // for multiple reference of current slice
bool m_pendingRasInit;
bool m_depQuantEnabledFlag;
bool m_signDataHidingEnabledFlag;
bool m_bCheckLDC;
bool m_biDirPred;
int m_symRefIdx[2];
// Data
int m_iSliceQpDelta;
int m_iSliceChromaQpDelta[MAX_NUM_COMPONENT+1];
Picture* m_apcRefPicList [NUM_REF_PIC_LIST_01][MAX_NUM_REF+1];
int m_aiRefPOCList [NUM_REF_PIC_LIST_01][MAX_NUM_REF+1];
bool m_bIsUsedAsLongTerm[NUM_REF_PIC_LIST_01][MAX_NUM_REF+1];
int m_iDepth;
// access channel
const DPS* m_dps;
const SPS* m_pcSPS;
const PPS* m_pcPPS;
Picture* m_pcPic;
bool m_colFromL0Flag; // collocated picture from List0 flag
bool m_noOutputPriorPicsFlag;
bool m_noRaslOutputFlag;
bool m_handleCraAsCvsStartFlag;
uint32_t m_colRefIdx;
uint32_t m_maxNumMergeCand;
uint32_t m_maxNumAffineMergeCand;
uint32_t m_maxNumTriangleCand;
#if JVET_O0455_IBC_MAX_MERGE_NUM
uint32_t m_maxNumIBCMergeCand;
#endif
bool m_disFracMMVD;
#if JVET_O1140_SLICE_DISABLE_BDOF_DMVR_FLAG
bool m_disBdofDmvrFlag;
#endif
double m_lambdas[MAX_NUM_COMPONENT];
bool m_abEqualRef [NUM_REF_PIC_LIST_01][MAX_NUM_REF][MAX_NUM_REF];
uint32_t m_uiTLayer;
bool m_bTLayerSwitchingFlag;
SliceConstraint m_sliceMode;
uint32_t m_sliceArgument;
uint32_t m_sliceCurStartCtuTsAddr;
uint32_t m_sliceCurEndCtuTsAddr;
uint32_t m_independentSliceIdx;
bool m_nextSlice;
uint32_t m_sliceBits;
bool m_bFinalized;
uint32_t m_sliceCurStartBrickIdx;
uint32_t m_sliceCurEndBrickIdx;
uint32_t m_sliceNumBricks;
uint32_t m_sliceIdx;
bool m_bTestWeightPred;
bool m_bTestWeightBiPred;
WPScalingParam m_weightPredTable[NUM_REF_PIC_LIST_01][MAX_NUM_REF][MAX_NUM_COMPONENT]; // [REF_PIC_LIST_0 or REF_PIC_LIST_1][refIdx][0:Y, 1:U, 2:V]
WPACDCParam m_weightACDCParam[MAX_NUM_COMPONENT];
ClpRngs m_clpRngs;
std::vector<uint32_t> m_substreamSizes;
bool m_cabacInitFlag;
#if JVET_O0105_ICT
bool m_jointCbCrSignFlag;
#endif
bool m_bLMvdL1Zero;
bool m_LFCrossSliceBoundaryFlag;
bool m_enableTMVPFlag;
SliceType m_encCABACTableIdx; // Used to transmit table selection across slices.
clock_t m_iProcessingStartTime;
double m_dProcessingTime;
bool m_splitConsOverrideFlag;
uint32_t m_uiMinQTSize;
uint32_t m_uiMaxBTDepth;
uint32_t m_uiMaxTTSize;
uint32_t m_uiMinQTSizeIChroma;
uint32_t m_uiMaxBTDepthIChroma;
uint32_t m_uiMaxBTSizeIChroma;
uint32_t m_uiMaxTTSizeIChroma;
uint32_t m_uiMaxBTSize;
#if JVET_O_MAX_NUM_ALF_APS_8
APS* m_alfApss[ALF_CTB_MAX_NUM_APS];
#else
APS* m_alfApss[MAX_NUM_APS];
#endif
bool m_tileGroupAlfEnabledFlag[MAX_NUM_COMPONENT];
int m_tileGroupNumAps;
std::vector<int> m_tileGroupLumaApsId;
int m_tileGroupChromaApsId;
bool m_disableSATDForRd;
int m_lmcsApsId;
APS* m_lmcsAps;
bool m_tileGroupLmcsEnabledFlag;
bool m_tileGroupLmcsChromaResidualScaleFlag;
public:
Slice();
virtual ~Slice();
void initSlice();
int getRefIdx4MVPair( RefPicList eCurRefPicList, int nCurRefIdx );
void setDPS( DPS* dps ) { m_dps = dps; }
const DPS* getDPS() const { return m_dps; }
void setSPS( const SPS* pcSPS ) { m_pcSPS = pcSPS; }
const SPS* getSPS() const { return m_pcSPS; }
void setPPS( const PPS* pcPPS ) { m_pcPPS = pcPPS; m_iPPSId = (pcPPS) ? pcPPS->getPPSId() : -1; }
const PPS* getPPS() const { return m_pcPPS; }
void setPPSId( int PPSId ) { m_iPPSId = PPSId; }
int getPPSId() const { return m_iPPSId; }
void setAlfAPSs(APS** apss) { memcpy(m_alfApss, apss, sizeof(m_alfApss)); }
APS** getAlfAPSs() { return m_alfApss; }
void setLmcsAPS(APS* lmcsAps) { m_lmcsAps = lmcsAps; m_lmcsApsId = (lmcsAps) ? lmcsAps->getAPSId() : -1; }
APS* getLmcsAPS() { return m_lmcsAps; }
void setLmcsAPSId(int lmcsApsId) { m_lmcsApsId = lmcsApsId; }
int getLmcsAPSId() const { return m_lmcsApsId; }
void setLmcsEnabledFlag(bool b) { m_tileGroupLmcsEnabledFlag = b; }
bool getLmcsEnabledFlag() { return m_tileGroupLmcsEnabledFlag; }
const bool getLmcsEnabledFlag() const { return m_tileGroupLmcsEnabledFlag; }
void setLmcsChromaResidualScaleFlag(bool b) { m_tileGroupLmcsChromaResidualScaleFlag = b; }
bool getLmcsChromaResidualScaleFlag() { return m_tileGroupLmcsChromaResidualScaleFlag; }
const bool getLmcsChromaResidualScaleFlag() const { return m_tileGroupLmcsChromaResidualScaleFlag; }
void setPicOutputFlag( bool b ) { m_PicOutputFlag = b; }
bool getPicOutputFlag() const { return m_PicOutputFlag; }
void setSaoEnabledFlag(ChannelType chType, bool s) {m_saoEnabledFlag[chType] =s; }
bool getSaoEnabledFlag(ChannelType chType) const { return m_saoEnabledFlag[chType]; }
void setRPL0(const ReferencePictureList *pcRPL) { m_pRPL0 = pcRPL; }
void setRPL1(const ReferencePictureList *pcRPL) { m_pRPL1 = pcRPL; }
const ReferencePictureList* getRPL0() { return m_pRPL0; }
const ReferencePictureList* getRPL1() { return m_pRPL1; }
ReferencePictureList* getLocalRPL0() { return &m_localRPL0; }
ReferencePictureList* getLocalRPL1() { return &m_localRPL1; }
void setRPL0idx(int rplIdx) { m_rpl0Idx = rplIdx; }
void setRPL1idx(int rplIdx) { m_rpl1Idx = rplIdx; }
int getRPL0idx() const { return m_rpl0Idx; }
int getRPL1idx() const { return m_rpl1Idx; }
void setLastIDR(int iIDRPOC) { m_iLastIDR = iIDRPOC; }
int getLastIDR() const { return m_iLastIDR; }
void setAssociatedIRAPPOC(int iAssociatedIRAPPOC) { m_iAssociatedIRAP = iAssociatedIRAPPOC; }
int getAssociatedIRAPPOC() const { return m_iAssociatedIRAP; }
void setAssociatedIRAPType(NalUnitType associatedIRAPType) { m_iAssociatedIRAPType = associatedIRAPType; }
NalUnitType getAssociatedIRAPType() const { return m_iAssociatedIRAPType; }
SliceType getSliceType() const { return m_eSliceType; }
int getPOC() const { return m_iPOC; }
int getSliceQp() const { return m_iSliceQp; }
bool getUseWeightedPrediction() const { return( (m_eSliceType==P_SLICE && testWeightPred()) || (m_eSliceType==B_SLICE && testWeightBiPred()) ); }
int getSliceQpDelta() const { return m_iSliceQpDelta; }
int getSliceChromaQpDelta(ComponentID compID) const { return isLuma(compID) ? 0 : m_iSliceChromaQpDelta[compID]; }
bool getUseChromaQpAdj() const { return m_ChromaQpAdjEnabled; }
bool getDeblockingFilterDisable() const { return m_deblockingFilterDisable; }
bool getDeblockingFilterOverrideFlag() const { return m_deblockingFilterOverrideFlag; }
int getDeblockingFilterBetaOffsetDiv2()const { return m_deblockingFilterBetaOffsetDiv2; }
int getDeblockingFilterTcOffsetDiv2() const { return m_deblockingFilterTcOffsetDiv2; }
bool getPendingRasInit() const { return m_pendingRasInit; }
void setPendingRasInit( bool val ) { m_pendingRasInit = val; }
int getNumRefIdx( RefPicList e ) const { return m_aiNumRefIdx[e]; }
Picture* getPic() { return m_pcPic; }
const Picture* getPic() const { return m_pcPic; }
const Picture* getRefPic( RefPicList e, int iRefIdx) const { return m_apcRefPicList[e][iRefIdx]; }
int getRefPOC( RefPicList e, int iRefIdx) const { return m_aiRefPOCList[e][iRefIdx]; }
int getDepth() const { return m_iDepth; }
bool getColFromL0Flag() const { return m_colFromL0Flag; }
uint32_t getColRefIdx() const { return m_colRefIdx; }
void checkColRefIdx(uint32_t curSliceSegmentIdx, const Picture* pic);
bool getIsUsedAsLongTerm(int i, int j) const { return m_bIsUsedAsLongTerm[i][j]; }
void setIsUsedAsLongTerm(int i, int j, bool value) { m_bIsUsedAsLongTerm[i][j] = value; }
bool getCheckLDC() const { return m_bCheckLDC; }
bool getMvdL1ZeroFlag() const { return m_bLMvdL1Zero; }
int getList1IdxToList0Idx( int list1Idx ) const { return m_list1IdxToList0Idx[list1Idx]; }
void setPOC( int i ) { m_iPOC = i; }
void setNalUnitType( NalUnitType e ) { m_eNalUnitType = e; }
NalUnitType getNalUnitType() const { return m_eNalUnitType; }
bool getRapPicFlag() const;
bool getIdrPicFlag() const { return getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP; }
bool isIRAP() const { return (getNalUnitType() >= NAL_UNIT_CODED_SLICE_IDR_W_RADL) && (getNalUnitType() <= NAL_UNIT_CODED_SLICE_CRA); }
bool isIDRorBLA() const { return (getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL) || (getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP); }
void checkCRA(const ReferencePictureList *pRPL0, const ReferencePictureList *pRPL1, int& pocCRA, NalUnitType& associatedIRAPType, PicList& rcListPic);
void decodingRefreshMarking(int& pocCRA, bool& bRefreshPending, PicList& rcListPic, const bool bEfficientFieldIRAPEnabled);
void setSliceType( SliceType e ) { m_eSliceType = e; }
void setSliceQp( int i ) { m_iSliceQp = i; }
void setSliceQpDelta( int i ) { m_iSliceQpDelta = i; }
void setSliceChromaQpDelta( ComponentID compID, int i ) { m_iSliceChromaQpDelta[compID] = isLuma(compID) ? 0 : i; }
void setUseChromaQpAdj( bool b ) { m_ChromaQpAdjEnabled = b; }
void setDeblockingFilterDisable( bool b ) { m_deblockingFilterDisable= b; }
void setDeblockingFilterOverrideFlag( bool b ) { m_deblockingFilterOverrideFlag = b; }
void setDeblockingFilterBetaOffsetDiv2( int i ) { m_deblockingFilterBetaOffsetDiv2 = i; }
void setDeblockingFilterTcOffsetDiv2( int i ) { m_deblockingFilterTcOffsetDiv2 = i; }
void setNumRefIdx( RefPicList e, int i ) { m_aiNumRefIdx[e] = i; }
void setPic( Picture* p ) { m_pcPic = p; }
void setDepth( int iDepth ) { m_iDepth = iDepth; }
void constructRefPicList(PicList& rcListPic);
void setRefPOCList();
void setColFromL0Flag( bool colFromL0 ) { m_colFromL0Flag = colFromL0; }
void setColRefIdx( uint32_t refIdx) { m_colRefIdx = refIdx; }
void setCheckLDC( bool b ) { m_bCheckLDC = b; }
void setMvdL1ZeroFlag( bool b) { m_bLMvdL1Zero = b; }
void setBiDirPred( bool b, int refIdx0, int refIdx1 ) { m_biDirPred = b; m_symRefIdx[0] = refIdx0; m_symRefIdx[1] = refIdx1; }
bool getBiDirPred() const { return m_biDirPred; }
int getSymRefIdx( int refList ) const { return m_symRefIdx[refList]; }
bool isIntra() const { return m_eSliceType == I_SLICE; }
bool isInterB() const { return m_eSliceType == B_SLICE; }
bool isInterP() const { return m_eSliceType == P_SLICE; }
void setLambdas( const double lambdas[MAX_NUM_COMPONENT] ) { for (int component = 0; component < MAX_NUM_COMPONENT; component++) m_lambdas[component] = lambdas[component]; }
const double* getLambdas() const { return m_lambdas; }
void setSplitConsOverrideFlag(bool b) { m_splitConsOverrideFlag = b; }
bool getSplitConsOverrideFlag() const { return m_splitConsOverrideFlag; }
void setMinQTSize(int i) { m_uiMinQTSize = i; }
uint32_t getMinQTSize() const { return m_uiMinQTSize; }
void setMaxBTDepth(int i) { m_uiMaxBTDepth = i; }
uint32_t getMaxBTDepth() const { return m_uiMaxBTDepth; }
void setMaxTTSize(int i) { m_uiMaxTTSize = i; }
uint32_t getMaxTTSize() const { return m_uiMaxTTSize; }
void setMinQTSizeIChroma(int i) { m_uiMinQTSizeIChroma = i; }
uint32_t getMinQTSizeIChroma() const { return m_uiMinQTSizeIChroma; }
void setMaxBTDepthIChroma(int i) { m_uiMaxBTDepthIChroma = i; }
uint32_t getMaxBTDepthIChroma() const { return m_uiMaxBTDepthIChroma; }
void setMaxBTSizeIChroma(int i) { m_uiMaxBTSizeIChroma = i; }
uint32_t getMaxBTSizeIChroma() const { return m_uiMaxBTSizeIChroma; }
void setMaxTTSizeIChroma(int i) { m_uiMaxTTSizeIChroma = i; }
uint32_t getMaxTTSizeIChroma() const { return m_uiMaxTTSizeIChroma; }
void setMaxBTSize(int i) { m_uiMaxBTSize = i; }
uint32_t getMaxBTSize() const { return m_uiMaxBTSize; }
void setDepQuantEnabledFlag( bool b ) { m_depQuantEnabledFlag = b; }
bool getDepQuantEnabledFlag() const { return m_depQuantEnabledFlag; }
void setSignDataHidingEnabledFlag( bool b ) { m_signDataHidingEnabledFlag = b; }
bool getSignDataHidingEnabledFlag() const { return m_signDataHidingEnabledFlag; }
void initEqualRef();
bool isEqualRef( RefPicList e, int iRefIdx1, int iRefIdx2 )
{
CHECK(e>=NUM_REF_PIC_LIST_01, "Invalid reference picture list");
if (iRefIdx1 < 0 || iRefIdx2 < 0)
{
return false;
}
else
{
return m_abEqualRef[e][iRefIdx1][iRefIdx2];
}
}
void setEqualRef( RefPicList e, int iRefIdx1, int iRefIdx2, bool b)
{
CHECK( e >= NUM_REF_PIC_LIST_01, "Invalid reference picture list" );
m_abEqualRef[e][iRefIdx1][iRefIdx2] = m_abEqualRef[e][iRefIdx2][iRefIdx1] = b;
}
static void sortPicList( PicList& rcListPic );
void setList1IdxToList0Idx();
uint32_t getTLayer() const { return m_uiTLayer; }
void setTLayer( uint32_t uiTLayer ) { m_uiTLayer = uiTLayer; }
void checkLeadingPictureRestrictions( PicList& rcListPic ) const;
void applyReferencePictureListBasedMarking( PicList& rcListPic, const ReferencePictureList *pRPL0, const ReferencePictureList *pRPL1 ) const;
bool isTemporalLayerSwitchingPoint( PicList& rcListPic ) const;
bool isStepwiseTemporalLayerSwitchingPointCandidate( PicList& rcListPic ) const;
int checkThatAllRefPicsAreAvailable(PicList& rcListPic, const ReferencePictureList *pRPL, int rplIdx, bool printErrors) const;
void createExplicitReferencePictureSetFromReference(PicList& rcListPic, const ReferencePictureList *pRPL0, const ReferencePictureList *pRPL1);
void setMaxNumMergeCand(uint32_t val ) { m_maxNumMergeCand = val; }
uint32_t getMaxNumMergeCand() const { return m_maxNumMergeCand; }
void setMaxNumAffineMergeCand( uint32_t val ) { m_maxNumAffineMergeCand = val; }
uint32_t getMaxNumAffineMergeCand() const { return m_maxNumAffineMergeCand; }
void setMaxNumTriangleCand(uint32_t val) { m_maxNumTriangleCand = val;}
uint32_t getMaxNumTriangleCand() const { return m_maxNumTriangleCand;}
#if JVET_O0455_IBC_MAX_MERGE_NUM
void setMaxNumIBCMergeCand( uint32_t val ) { m_maxNumIBCMergeCand = val; }
uint32_t getMaxNumIBCMergeCand() const { return m_maxNumIBCMergeCand; }
#endif
void setDisFracMMVD( bool val ) { m_disFracMMVD = val; }
bool getDisFracMMVD() const { return m_disFracMMVD; }
#if JVET_O1140_SLICE_DISABLE_BDOF_DMVR_FLAG
void setDisBdofDmvrFlag(bool val) { m_disBdofDmvrFlag = val; }
bool getDisBdofDmvrFlag() const { return m_disBdofDmvrFlag; }
#endif
void setNoOutputPriorPicsFlag( bool val ) { m_noOutputPriorPicsFlag = val; }
bool getNoOutputPriorPicsFlag() const { return m_noOutputPriorPicsFlag; }
void setNoRaslOutputFlag( bool val ) { m_noRaslOutputFlag = val; }
bool getNoRaslOutputFlag() const { return m_noRaslOutputFlag; }
void setHandleCraAsCvsStartFlag( bool val ) { m_handleCraAsCvsStartFlag = val; }
bool getHandleCraAsCvsStartFlag() const { return m_handleCraAsCvsStartFlag; }
void setSliceMode( SliceConstraint mode ) { m_sliceMode = mode; }
SliceConstraint getSliceMode() const { return m_sliceMode; }
void setSliceArgument( uint32_t uiArgument ) { m_sliceArgument = uiArgument; }
uint32_t getSliceArgument() const { return m_sliceArgument; }
void setSliceCurStartCtuTsAddr( uint32_t ctuTsAddr ) { m_sliceCurStartCtuTsAddr = ctuTsAddr; } // CTU Tile-scan address (as opposed to raster-scan)
uint32_t getSliceCurStartCtuTsAddr() const { return m_sliceCurStartCtuTsAddr; } // CTU Tile-scan address (as opposed to raster-scan)
void setSliceCurEndCtuTsAddr( uint32_t ctuTsAddr ) { m_sliceCurEndCtuTsAddr = ctuTsAddr; } // CTU Tile-scan address (as opposed to raster-scan)
uint32_t getSliceCurEndCtuTsAddr() const { return m_sliceCurEndCtuTsAddr; } // CTU Tile-scan address (as opposed to raster-scan)
void setIndependentSliceIdx( uint32_t i) { m_independentSliceIdx = i; }
uint32_t getIndependentSliceIdx() const { return m_independentSliceIdx; }
void copySliceInfo(Slice *pcSliceSrc, bool cpyAlmostAll = true);
void setSliceBits( uint32_t uiVal ) { m_sliceBits = uiVal; }
uint32_t getSliceBits() const { return m_sliceBits; }
void setFinalized( bool uiVal ) { m_bFinalized = uiVal; }
bool getFinalized() const { return m_bFinalized; }
void setSliceCurStartBrickIdx(uint32_t brickIdx) { m_sliceCurStartBrickIdx = brickIdx; }
uint32_t getSliceCurStartBrickIdx() const { return m_sliceCurStartBrickIdx; }
void setSliceCurEndBrickIdx(uint32_t brickIdx) { m_sliceCurEndBrickIdx = brickIdx; }
uint32_t getSliceCurEndBrickIdx() const { return m_sliceCurEndBrickIdx; }
void setSliceNumBricks(uint32_t numBricks) { m_sliceNumBricks = numBricks; }
uint32_t getSliceNumBricks() const { return m_sliceNumBricks; }
void setSliceIndex(uint32_t idx) { m_sliceIdx = idx; }
uint32_t setSliceIndex() const { return m_sliceIdx; }
bool testWeightPred( ) const { return m_bTestWeightPred; }
void setTestWeightPred( bool bValue ) { m_bTestWeightPred = bValue; }
bool testWeightBiPred( ) const { return m_bTestWeightBiPred; }
void setTestWeightBiPred( bool bValue ) { m_bTestWeightBiPred = bValue; }
void setWpScaling( WPScalingParam wp[NUM_REF_PIC_LIST_01][MAX_NUM_REF][MAX_NUM_COMPONENT] )
{
memcpy(m_weightPredTable, wp, sizeof(WPScalingParam)*NUM_REF_PIC_LIST_01*MAX_NUM_REF*MAX_NUM_COMPONENT);
}
void getWpScaling( RefPicList e, int iRefIdx, WPScalingParam *&wp) const;
void resetWpScaling();
void initWpScaling(const SPS *sps);
void setWpAcDcParam( WPACDCParam wp[MAX_NUM_COMPONENT] ) { memcpy(m_weightACDCParam, wp, sizeof(WPACDCParam)*MAX_NUM_COMPONENT); }
void getWpAcDcParam( const WPACDCParam *&wp ) const;
void initWpAcDcParam();
void clearSubstreamSizes( ) { return m_substreamSizes.clear(); }
uint32_t getNumberOfSubstreamSizes( ) { return (uint32_t) m_substreamSizes.size(); }
void addSubstreamSize( uint32_t size ) { m_substreamSizes.push_back(size); }
uint32_t getSubstreamSize( uint32_t idx ) { CHECK(idx>=getNumberOfSubstreamSizes(),"Invalid index"); return m_substreamSizes[idx]; }
void setCabacInitFlag( bool val ) { m_cabacInitFlag = val; } //!< set CABAC initial flag
bool getCabacInitFlag() const { return m_cabacInitFlag; } //!< get CABAC initial flag
#if JVET_O0105_ICT
void setJointCbCrSignFlag( bool b ) { m_jointCbCrSignFlag = b; }
bool getJointCbCrSignFlag() const { return m_jointCbCrSignFlag; }
#endif
void setLFCrossSliceBoundaryFlag( bool val ) { m_LFCrossSliceBoundaryFlag = val; }
bool getLFCrossSliceBoundaryFlag() const { return m_LFCrossSliceBoundaryFlag; }
void setEnableTMVPFlag( bool b ) { m_enableTMVPFlag = b; }
bool getEnableTMVPFlag() const { return m_enableTMVPFlag; }
void setEncCABACTableIdx( SliceType idx ) { m_encCABACTableIdx = idx; }
SliceType getEncCABACTableIdx() const { return m_encCABACTableIdx; }
void setSliceQpBase( int i ) { m_iSliceQpBase = i; }
int getSliceQpBase() const { return m_iSliceQpBase; }
void setDefaultClpRng( const SPS& sps );
const ClpRngs& clpRngs() const { return m_clpRngs;}
const ClpRng& clpRng( ComponentID id) const { return m_clpRngs.comp[id];}
ClpRngs& getClpRngs() { return m_clpRngs;}
unsigned getMinPictureDistance() const ;
void startProcessingTimer();
void stopProcessingTimer();
void resetProcessingTime() { m_dProcessingTime = m_iProcessingStartTime = 0; }
double getProcessingTime() const { return m_dProcessingTime; }
void resetTileGroupAlfEnabledFlag() { memset(m_tileGroupAlfEnabledFlag, 0, sizeof(m_tileGroupAlfEnabledFlag)); }
bool getTileGroupAlfEnabledFlag(ComponentID compId) const { return m_tileGroupAlfEnabledFlag[compId]; }
void setTileGroupAlfEnabledFlag(ComponentID compId, bool b) { m_tileGroupAlfEnabledFlag[compId] = b; }
int getTileGroupNumAps() const { return m_tileGroupNumAps; }
void setTileGroupNumAps(int i) { m_tileGroupNumAps = i; }
int getTileGroupApsIdChroma() const { return m_tileGroupChromaApsId; }
void setTileGroupApsIdChroma(int i) { m_tileGroupChromaApsId = i; }
std::vector<int32_t> getTileGroupApsIdLuma() const { return m_tileGroupLumaApsId; }
void setAlfAPSs(std::vector<int> ApsIDs)
{
m_tileGroupLumaApsId.resize(m_tileGroupNumAps);
for (int i = 0; i < m_tileGroupNumAps; i++)
{
m_tileGroupLumaApsId[i] = ApsIDs[i];
}
}
void setDisableSATDForRD(bool b) { m_disableSATDForRd = b; }
bool getDisableSATDForRD() { return m_disableSATDForRd; }
protected:
Picture* xGetRefPic (PicList& rcListPic, int poc);
Picture* xGetLongTermRefPic(PicList& rcListPic, int poc, bool pocHasMsb);
#if JVET_O0119_BASE_PALETTE_444
public:
std::unordered_map< Position, std::unordered_map< Size, double> > m_mapPltCost;
private:
#endif
};// END CLASS DEFINITION Slice
void calculateParameterSetChangedFlag(bool &bChanged, const std::vector<uint8_t> *pOldData, const std::vector<uint8_t> *pNewData);
template <class T> class ParameterSetMap
{
public:
template <class Tm>
struct MapData
{
bool bChanged;
std::vector<uint8_t> *pNaluData; // Can be null
Tm* parameterSet;
};
ParameterSetMap(int maxId)
:m_maxId (maxId)
,m_lastActiveParameterSet(NULL)
{
m_activePsId.clear();
}
~ParameterSetMap()
{
for (typename std::map<int,MapData<T> >::iterator i = m_paramsetMap.begin(); i!= m_paramsetMap.end(); i++)
{
delete (*i).second.pNaluData;
delete (*i).second.parameterSet;
}
delete m_lastActiveParameterSet; m_lastActiveParameterSet = NULL;
}
T *allocatePS(const int psId)
{
CHECK( psId >= m_maxId, "Invalid PS id" );
if ( m_paramsetMap.find(psId) == m_paramsetMap.end() )
{
m_paramsetMap[psId].bChanged = true;
m_paramsetMap[psId].pNaluData=0;
m_paramsetMap[psId].parameterSet = new T;
setID(m_paramsetMap[psId].parameterSet, psId);
}
return m_paramsetMap[psId].parameterSet;
}
void clearMap()
{
m_paramsetMap.clear();
}
void storePS(int psId, T *ps, const std::vector<uint8_t> *pNaluData)
{
CHECK( psId >= m_maxId, "Invalid PS id" );
if ( m_paramsetMap.find(psId) != m_paramsetMap.end() )
{
MapData<T> &mapData=m_paramsetMap[psId];
// work out changed flag
calculateParameterSetChangedFlag(mapData.bChanged, mapData.pNaluData, pNaluData);
if( ! mapData.bChanged )
{
// just keep the old one
delete ps;
return;
}
if (find(m_activePsId.begin(), m_activePsId.end(), psId) != m_activePsId.end())
{
std::swap( m_paramsetMap[psId].parameterSet, m_lastActiveParameterSet );
}
delete m_paramsetMap[psId].pNaluData;
delete m_paramsetMap[psId].parameterSet;
m_paramsetMap[psId].parameterSet = ps;
}
else
{
m_paramsetMap[psId].parameterSet = ps;
m_paramsetMap[psId].bChanged = false;
}
if (pNaluData != 0)
{
m_paramsetMap[psId].pNaluData=new std::vector<uint8_t>;
*(m_paramsetMap[psId].pNaluData) = *pNaluData;
}
else
{
m_paramsetMap[psId].pNaluData=0;
}
}
void setChangedFlag(int psId, bool bChanged=true)
{
if ( m_paramsetMap.find(psId) != m_paramsetMap.end() )
{
m_paramsetMap[psId].bChanged=bChanged;
}
}
void clearChangedFlag(int psId)
{
if ( m_paramsetMap.find(psId) != m_paramsetMap.end() )
{
m_paramsetMap[psId].bChanged=false;
}
}
bool getChangedFlag(int psId) const
{
const typename std::map<int,MapData<T> >::const_iterator constit=m_paramsetMap.find(psId);
if ( constit != m_paramsetMap.end() )
{
return constit->second.bChanged;
}
return false;
}
T* getPS(int psId)
{
typename std::map<int,MapData<T> >::iterator it=m_paramsetMap.find(psId);
return ( it == m_paramsetMap.end() ) ? NULL : (it)->second.parameterSet;
}
const T* getPS(int psId) const
{
typename std::map<int,MapData<T> >::const_iterator it=m_paramsetMap.find(psId);
return ( it == m_paramsetMap.end() ) ? NULL : (it)->second.parameterSet;
}
T* getFirstPS()
{
return (m_paramsetMap.begin() == m_paramsetMap.end() ) ? NULL : m_paramsetMap.begin()->second.parameterSet;
}
void setActive(int psId) { m_activePsId.push_back(psId); }
void clear() { m_activePsId.clear(); }
private:
std::map<int,MapData<T> > m_paramsetMap;
int m_maxId;
std::vector<int> m_activePsId;
T* m_lastActiveParameterSet;
static void setID(T* parameterSet, const int psId);
};
class ParameterSetManager
{
public:
ParameterSetManager();
virtual ~ParameterSetManager();
void storeDPS(DPS *dps, const std::vector<uint8_t> &naluData) { m_dpsMap.storePS( dps->getDecodingParameterSetId(), dps, &naluData); };
//! get pointer to existing video parameter set
DPS* getDPS(int dpsId) { return m_dpsMap.getPS(dpsId); };
bool getDPSChangedFlag(int dpsId) const { return m_dpsMap.getChangedFlag(dpsId); }
void clearDPSChangedFlag(int dpsId) { m_dpsMap.clearChangedFlag(dpsId); }
DPS* getFirstDPS() { return m_dpsMap.getFirstPS(); };
//! store sequence parameter set and take ownership of it
void storeSPS(SPS *sps, const std::vector<uint8_t> &naluData) { m_spsMap.storePS( sps->getSPSId(), sps, &naluData); };
//! get pointer to existing sequence parameter set
SPS* getSPS(int spsId) { return m_spsMap.getPS(spsId); };
bool getSPSChangedFlag(int spsId) const { return m_spsMap.getChangedFlag(spsId); }
void clearSPSChangedFlag(int spsId) { m_spsMap.clearChangedFlag(spsId); }
SPS* getFirstSPS() { return m_spsMap.getFirstPS(); };
//! store picture parameter set and take ownership of it
void storePPS(PPS *pps, const std::vector<uint8_t> &naluData) { m_ppsMap.storePS( pps->getPPSId(), pps, &naluData); };
//! get pointer to existing picture parameter set
PPS* getPPS(int ppsId) { return m_ppsMap.getPS(ppsId); };
bool getPPSChangedFlag(int ppsId) const { return m_ppsMap.getChangedFlag(ppsId); }
void clearPPSChangedFlag(int ppsId) { m_ppsMap.clearChangedFlag(ppsId); }
PPS* getFirstPPS() { return m_ppsMap.getFirstPS(); };
//! activate a SPS from a active parameter sets SEI message
//! \returns true, if activation is successful
// bool activateSPSWithSEI(int SPSId);
//! activate a PPS and depending on isIDR parameter also SPS
//! \returns true, if activation is successful
bool activatePPS(int ppsId, bool isIRAP);
APS** getAPSs() { return &m_apss[0]; }
ParameterSetMap<APS>* getApsMap() { return &m_apsMap; }
void storeAPS(APS *aps, const std::vector<uint8_t> &naluData) { m_apsMap.storePS((aps->getAPSId() << NUM_APS_TYPE_LEN) + aps->getAPSType(), aps, &naluData); };
APS* getAPS(int apsId, int apsType) { return m_apsMap.getPS((apsId << NUM_APS_TYPE_LEN) + apsType); };
bool getAPSChangedFlag(int apsId, int apsType) const { return m_apsMap.getChangedFlag((apsId << NUM_APS_TYPE_LEN) + apsType); }
void clearAPSChangedFlag(int apsId, int apsType) { m_apsMap.clearChangedFlag((apsId << NUM_APS_TYPE_LEN) + apsType); }
APS* getFirstAPS() { return m_apsMap.getFirstPS(); };
bool activateAPS(int apsId, int apsType);
const SPS* getActiveSPS()const { return m_spsMap.getPS(m_activeSPSId); };
const DPS* getActiveDPS()const { return m_dpsMap.getPS(m_activeDPSId); };
protected:
ParameterSetMap<SPS> m_spsMap;
ParameterSetMap<PPS> m_ppsMap;
ParameterSetMap<APS> m_apsMap;
ParameterSetMap<DPS> m_dpsMap;
#if JVET_O_MAX_NUM_ALF_APS_8
APS* m_apss[ALF_CTB_MAX_NUM_APS];
#else
APS* m_apss[MAX_NUM_APS];
#endif
int m_activeDPSId; // -1 for nothing active
int m_activeSPSId; // -1 for nothing active
};
class PreCalcValues
{
public:
PreCalcValues( const SPS& sps, const PPS& pps, bool _isEncoder )
: chrFormat ( sps.getChromaFormatIdc() )
, multiBlock422 ( false )
, maxCUWidth ( sps.getMaxCUWidth() )
, maxCUHeight ( sps.getMaxCUHeight() )
, maxCUWidthMask ( maxCUWidth - 1 )
, maxCUHeightMask ( maxCUHeight - 1 )
, maxCUWidthLog2 ( g_aucLog2[ maxCUWidth ] )
, maxCUHeightLog2 ( g_aucLog2[ maxCUHeight ] )
, minCUWidth ( sps.getMaxCUWidth() >> sps.getMaxCodingDepth() )
, minCUHeight ( sps.getMaxCUHeight() >> sps.getMaxCodingDepth() )
, minCUWidthLog2 ( g_aucLog2[ minCUWidth ] )
, minCUHeightLog2 ( g_aucLog2[ minCUHeight ] )
, partsInCtuWidth ( 1 << sps.getMaxCodingDepth() )
, partsInCtuHeight ( 1 << sps.getMaxCodingDepth() )
, partsInCtu ( 1 << (sps.getMaxCodingDepth() << 1) )
, widthInCtus ( (sps.getPicWidthInLumaSamples () + sps.getMaxCUWidth () - 1) / sps.getMaxCUWidth () )
, heightInCtus ( (sps.getPicHeightInLumaSamples() + sps.getMaxCUHeight() - 1) / sps.getMaxCUHeight() )
, sizeInCtus ( widthInCtus * heightInCtus )
, lumaWidth ( sps.getPicWidthInLumaSamples() )
, lumaHeight ( sps.getPicHeightInLumaSamples() )
, fastDeltaQPCuMaxSize( Clip3(sps.getMaxCUHeight() >> (sps.getLog2DiffMaxMinCodingBlockSize()), sps.getMaxCUHeight(), 32u) )
, noChroma2x2 ( false )
, isEncoder ( _isEncoder )
, ISingleTree ( !sps.getUseDualITree() )
, maxBtDepth { sps.getMaxBTDepthI(), sps.getMaxBTDepth(), sps.getMaxBTDepthIChroma() }
, minBtSize { 1u << sps.getLog2MinCodingBlockSize(), 1u << sps.getLog2MinCodingBlockSize(), 1u << sps.getLog2MinCodingBlockSize() }
, maxBtSize { sps.getMaxBTSizeI(), sps.getMaxBTSize(), sps.getMaxBTSizeIChroma() }
, minTtSize { 1u << sps.getLog2MinCodingBlockSize(), 1u << sps.getLog2MinCodingBlockSize(), 1u << sps.getLog2MinCodingBlockSize() }
, maxTtSize { sps.getMaxTTSizeI(), sps.getMaxTTSize(), sps.getMaxTTSizeIChroma() }
, minQtSize { sps.getMinQTSize(I_SLICE, CHANNEL_TYPE_LUMA), sps.getMinQTSize(B_SLICE, CHANNEL_TYPE_LUMA), sps.getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA) }
{}
const ChromaFormat chrFormat;
const bool multiBlock422;
const unsigned maxCUWidth;
const unsigned maxCUHeight;
// to get CTU position, use (x & maxCUWidthMask) rather than (x % maxCUWidth)
const unsigned maxCUWidthMask;
const unsigned maxCUHeightMask;
const unsigned maxCUWidthLog2;
const unsigned maxCUHeightLog2;
const unsigned minCUWidth;
const unsigned minCUHeight;
const unsigned minCUWidthLog2;
const unsigned minCUHeightLog2;
const unsigned partsInCtuWidth;
const unsigned partsInCtuHeight;
const unsigned partsInCtu;
const unsigned widthInCtus;
const unsigned heightInCtus;
const unsigned sizeInCtus;
const unsigned lumaWidth;
const unsigned lumaHeight;
const unsigned fastDeltaQPCuMaxSize;
const bool noChroma2x2;
const bool isEncoder;
const bool ISingleTree;
private:
const unsigned maxBtDepth[3];
const unsigned minBtSize [3];
const unsigned maxBtSize [3];
const unsigned minTtSize [3];
const unsigned maxTtSize [3];
const unsigned minQtSize [3];
unsigned getValIdx ( const Slice &slice, const ChannelType chType ) const;
public:
unsigned getMaxBtDepth( const Slice &slice, const ChannelType chType ) const;
unsigned getMinBtSize ( const Slice &slice, const ChannelType chType ) const;
unsigned getMaxBtSize ( const Slice &slice, const ChannelType chType ) const;
unsigned getMinTtSize ( const Slice &slice, const ChannelType chType ) const;
unsigned getMaxTtSize ( const Slice &slice, const ChannelType chType ) const;
unsigned getMinQtSize ( const Slice &slice, const ChannelType chType ) const;
};
#if ENABLE_TRACING
void xTraceVPSHeader();
void xTraceDPSHeader();
void xTraceSPSHeader();
void xTracePPSHeader();
void xTraceAPSHeader();
void xTraceSliceHeader();
void xTraceAccessUnitDelimiter();
#endif
#endif // __SLICE__