Skip to content
Snippets Groups Projects
UnitTools.cpp 82.5 KiB
Newer Older
  • Learn to ignore specific revisions
  •     }
      }
    
      // Set AffineMvField for affine motion compensation LT, RT, LB and RB
      mb.at(            0,             0 ).mv[eRefList] = affLT;
      mb.at( mb.width - 1,             0 ).mv[eRefList] = affRT;
    
      if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
      {
        mb.at( 0, mb.height - 1 ).mv[eRefList] = affLB;
      }
    }
    
    static bool deriveScaledMotionTemporal( const Slice&      slice,
                                            const Position&   colPos,
                                            const Picture*    pColPic,
                                            const RefPicList  eCurrRefPicList,
                                            Mv&         cColMv,
                                            const RefPicList  eFetchRefPicList)
    {
      const MotionInfo &mi = pColPic->cs->getMotionInfo(colPos);
      const Slice *pColSlice = nullptr;
    
      for (const auto &pSlice : pColPic->slices)
      {
        if (pSlice->getIndependentSliceIdx() == mi.sliceIdx)
        {
          pColSlice = pSlice;
          break;
        }
      }
    
      CHECK(pColSlice == nullptr, "Couldn't find the colocated slice");
    
      int iColPOC, iColRefPOC, iCurrPOC, iCurrRefPOC, iScale;
      bool bAllowMirrorMV = true;
      RefPicList eColRefPicList = slice.getCheckLDC() ? eCurrRefPicList : RefPicList(1 - eFetchRefPicList);
      if (pColPic == slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx()))
      {
        eColRefPicList = eCurrRefPicList;   //67 -> disable, 64 -> enable
        bAllowMirrorMV = false;
      }
    
      // Although it might make sense to keep the unavailable motion field per direction still be unavailable, I made the MV prediction the same way as in TMVP
      // So there is an interaction between MV0 and MV1 of the corresponding blocks identified by TV.
    
      // Grab motion and do necessary scaling.{{
      iCurrPOC = slice.getPOC();
    
      int iColRefIdx = mi.refIdx[eColRefPicList];
    
      if (iColRefIdx < 0 && (slice.getCheckLDC() || bAllowMirrorMV))
      {
        eColRefPicList = RefPicList(1 - eColRefPicList);
        iColRefIdx = mi.refIdx[eColRefPicList];
    
        if (iColRefIdx < 0)
        {
          return false;
        }
      }
    
      if (iColRefIdx >= 0 && slice.getNumRefIdx(eCurrRefPicList) > 0)
      {
        iColPOC = pColSlice->getPOC();
        iColRefPOC = pColSlice->getRefPOC(eColRefPicList, iColRefIdx);
        ///////////////////////////////////////////////////////////////
        // Set the target reference index to 0, may be changed later //
        ///////////////////////////////////////////////////////////////
        iCurrRefPOC = slice.getRefPic(eCurrRefPicList, 0)->getPOC();
        // Scale the vector.
        cColMv = mi.mv[eColRefPicList];
        //pcMvFieldSP[2*iPartition + eCurrRefPicList].getMv();
        // Assume always short-term for now
        iScale = xGetDistScaleFactor(iCurrPOC, iCurrRefPOC, iColPOC, iColRefPOC);
    
        if (iScale != 4096)
        {
    
    #if !REMOVE_MV_ADAPT_PREC
    
          if (slice.getSPS()->getSpsNext().getUseHighPrecMv())
          {
            cColMv.setHighPrec();
          }
    
    
          cColMv = cColMv.scaleMv(iScale);
        }
    
        return true;
      }
      return false;
    }
    
    void clipColBlkMv(int& mvX, int& mvY, const PredictionUnit& pu)
    {
      Position puPos = pu.lumaPos();
      Size     puSize = pu.lumaSize();
    
      int ctuSize = pu.cs->sps->getSpsNext().getCTUSize();
      int ctuX = puPos.x / ctuSize*ctuSize;
      int ctuY = puPos.y / ctuSize*ctuSize;
    
      int horMax = std::min((int)pu.cs->sps->getPicWidthInLumaSamples(), ctuX + ctuSize + 4) - puSize.width;
      int horMin = std::max((int)0, ctuX);
      int verMax = std::min((int)pu.cs->sps->getPicHeightInLumaSamples(), ctuY + ctuSize) - puSize.height;
      int verMin = std::min((int)0, ctuY);
    
      horMax = horMax - puPos.x;
      horMin = horMin - puPos.x;
      verMax = verMax - puPos.y;
      verMin = verMin - puPos.y;
    
      mvX = std::min(horMax, std::max(horMin, mvX));
      mvY = std::min(verMax, std::max(verMin, mvY));
    }
    
    
    bool PU::getInterMergeSubPuMvpCand(const PredictionUnit &pu, MergeCtx& mrgCtx, bool& LICFlag, const int count
    )
    
    {
      const Slice   &slice = *pu.cs->slice;
      const unsigned scale = 4 * std::max<int>(1, 4 * AMVP_DECIMATION_FACTOR / 4);
      const unsigned mask = ~(scale - 1);
    
      const Picture *pColPic = slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx());
      Mv cTMv;
      RefPicList fetchRefPicList = RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0);
    
      bool terminate = false;
      for (unsigned currRefListId = 0; currRefListId < (slice.getSliceType() == B_SLICE ? 2 : 1) && !terminate; currRefListId++)
      {
        for (int uiN = 0; uiN < count && !terminate; uiN++)
        {
          RefPicList currRefPicList = RefPicList(slice.getCheckLDC() ? (slice.getColFromL0Flag() ? currRefListId : 1 - currRefListId) : currRefListId);
    
          if ((mrgCtx.interDirNeighbours[uiN] & (1 << currRefPicList)) && slice.getRefPic(currRefPicList, mrgCtx.mvFieldNeighbours[uiN * 2 + currRefPicList].refIdx) == pColPic)
          {
            cTMv = mrgCtx.mvFieldNeighbours[uiN * 2 + currRefPicList].mv;
            terminate = true;
            fetchRefPicList = currRefPicList;
            break;
          }
        }
      }
    
      ///////////////////////////////////////////////////////////////////////
      ////////          GET Initial Temporal Vector                  ////////
      ///////////////////////////////////////////////////////////////////////
      int mvPrec = 2;
    
    #if !REMOVE_MV_ADAPT_PREC
    
      if (pu.cs->sps->getSpsNext().getUseHighPrecMv())
      {
        cTMv.setHighPrec();
    
        mvPrec += VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
    
    #if !REMOVE_MV_ADAPT_PREC
    
      int mvRndOffs = (1 << mvPrec) >> 1;
    
      Mv cTempVector = cTMv;
      bool  tempLICFlag = false;
    
      // compute the location of the current PU
      Position puPos = pu.lumaPos();
      Size puSize = pu.lumaSize();
      int numPartLine = std::max(puSize.width >> slice.getSubPuMvpSubblkLog2Size(), 1u);
      int numPartCol = std::max(puSize.height >> slice.getSubPuMvpSubblkLog2Size(), 1u);
      int puHeight = numPartCol == 1 ? puSize.height : 1 << slice.getSubPuMvpSubblkLog2Size();
      int puWidth = numPartLine == 1 ? puSize.width : 1 << slice.getSubPuMvpSubblkLog2Size();
    
      Mv cColMv;
      // use coldir.
      bool     bBSlice = slice.isInterB();
    
      Position centerPos;
    
      bool found = false;
      cTempVector = cTMv;
      int tempX = ((cTempVector.getHor() + mvRndOffs) >> mvPrec);
      int tempY = ((cTempVector.getVer() + mvRndOffs) >> mvPrec);
      clipColBlkMv(tempX, tempY, pu);
    
      if (puSize.width == puWidth && puSize.height == puHeight)
      {
        centerPos.x = puPos.x + (puSize.width >> 1) + tempX;
        centerPos.y = puPos.y + (puSize.height >> 1) + tempY;
      }
      else
      {
        centerPos.x = puPos.x + ((puSize.width / puWidth) >> 1)   * puWidth + (puWidth >> 1) + tempX;
        centerPos.y = puPos.y + ((puSize.height / puHeight) >> 1) * puHeight + (puHeight >> 1) + tempY;
      }
    
      centerPos.x = Clip3(0, (int)pColPic->lwidth() - 1, centerPos.x);
      centerPos.y = Clip3(0, (int)pColPic->lheight() - 1, centerPos.y);
    
      centerPos = Position{ PosType(centerPos.x & mask), PosType(centerPos.y & mask) };
    
      // derivation of center motion parameters from the collocated CU
      const MotionInfo &mi = pColPic->cs->getMotionInfo(centerPos);
    
      if (mi.isInter)
      {
        for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++)
        {
          RefPicList  currRefPicList = RefPicList(currRefListId);
    
          if (deriveScaledMotionTemporal(slice, centerPos, pColPic, currRefPicList, cColMv, fetchRefPicList))
          {
            // set as default, for further motion vector field spanning
            mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(cColMv, 0);
            mrgCtx.interDirNeighbours[count] |= (1 << currRefListId);
            LICFlag = tempLICFlag;
            found = true;
          }
          else
          {
            mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(Mv(), NOT_VALID);
            mrgCtx.interDirNeighbours[count] &= ~(1 << currRefListId);
          }
        }
      }
    
      if (!found)
      {
        return false;
      }
      
      int xOff = puWidth / 2;
      int yOff = puHeight / 2;
    
      // compute the location of the current PU
      xOff += tempX;
      yOff += tempY;
    
      int iPicWidth = pColPic->lwidth() - 1;
      int iPicHeight = pColPic->lheight() - 1;
    
      MotionBuf& mb = mrgCtx.subPuMvpMiBuf;
    
      const bool isBiPred = isBipredRestriction(pu);
    
      for (int y = puPos.y; y < puPos.y + puSize.height; y += puHeight)
      {
        for (int x = puPos.x; x < puPos.x + puSize.width; x += puWidth)
        {
          Position colPos{ x + xOff, y + yOff };
    
          colPos.x = Clip3(0, iPicWidth, colPos.x);
          colPos.y = Clip3(0, iPicHeight, colPos.y);
    
          colPos = Position{ PosType(colPos.x & mask), PosType(colPos.y & mask) };
    
          const MotionInfo &colMi = pColPic->cs->getMotionInfo(colPos);
    
          MotionInfo mi;
    
          mi.isInter = true;
          mi.sliceIdx = slice.getIndependentSliceIdx();
    
          if (colMi.isInter)
          {
            for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++)
            {
              RefPicList currRefPicList = RefPicList(currRefListId);
              if (deriveScaledMotionTemporal(slice, colPos, pColPic, currRefPicList, cColMv, fetchRefPicList))
              {
                mi.refIdx[currRefListId] = 0;
                mi.mv[currRefListId] = cColMv;
              }
            }
            }
          else
          {
            // intra coded, in this case, no motion vector is available for list 0 or list 1, so use default
            mi.mv[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].mv;
            mi.mv[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].mv;
            mi.refIdx[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].refIdx;
            mi.refIdx[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].refIdx;
          }
    
          mi.interDir = (mi.refIdx[0] != -1 ? 1 : 0) + (mi.refIdx[1] != -1 ? 2 : 0);
    
          if (isBiPred && mi.interDir == 3)
          {
            mi.interDir = 1;
            mi.mv[1] = Mv();
            mi.refIdx[1] = NOT_VALID;
          }
    
          mb.subBuf(g_miScaling.scale(Position{ x, y } -pu.lumaPos()), g_miScaling.scale(Size(puWidth, puHeight))).fill(mi);
          }
        }
    
      return true;
      }
    
    void PU::spanMotionInfo( PredictionUnit &pu, const MergeCtx &mrgCtx )
    {
      MotionBuf mb = pu.getMotionBuf();
    
      if( !pu.mergeFlag || pu.mergeType == MRG_TYPE_DEFAULT_N )
      {
        MotionInfo mi;
    
        mi.isInter  = CU::isInter( *pu.cu );
        mi.sliceIdx = pu.cu->slice->getIndependentSliceIdx();
    
        if( mi.isInter )
        {
          mi.interDir = pu.interDir;
    
          for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ )
          {
            mi.mv[i]     = pu.mv[i];
            mi.refIdx[i] = pu.refIdx[i];
          }
        }
    
        if( pu.cu->affine )
        {
          for( int y = 0; y < mb.height; y++ )
          {
            for( int x = 0; x < mb.width; x++ )
            {
              MotionInfo &dest = mb.at( x, y );
              dest.isInter  = mi.isInter;
              dest.interDir = mi.interDir;
              dest.sliceIdx = mi.sliceIdx;
              for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ )
              {
                if( mi.refIdx[i] == -1 )
                {
                  dest.mv[i] = Mv();
                }
                dest.refIdx[i] = mi.refIdx[i];
              }
            }
          }
        }
        else
        {
          mb.fill( mi );
        }
      }
      else if (pu.mergeType == MRG_TYPE_SUBPU_ATMVP)
      {
        CHECK(mrgCtx.subPuMvpMiBuf.area() == 0 || !mrgCtx.subPuMvpMiBuf.buf, "Buffer not initialized");
        mb.copyFrom(mrgCtx.subPuMvpMiBuf);
      }
      else
      {
    
        if( isBipredRestriction( pu ) )
        {
          for( int y = 0; y < mb.height; y++ )
          {
            for( int x = 0; x < mb.width; x++ )
            {
              MotionInfo &mi = mb.at( x, y );
              if( mi.interDir == 3 )
              {
                mi.interDir  = 1;
                mi.mv    [1] = Mv();
                mi.refIdx[1] = NOT_VALID;
              }
            }
          }
        }
      }
    }
    
    void PU::applyImv( PredictionUnit& pu, MergeCtx &mrgCtx, InterPrediction *interPred )
    {
      if( !pu.mergeFlag )
      {
        unsigned imvShift = pu.cu->imv << 1;
        if( pu.interDir != 2 /* PRED_L1 */ )
        {
          if (pu.cu->imv)
          {
    
    #if !REMOVE_MV_ADAPT_PREC
            CHECK(pu.mvd[0].highPrec, "Motion vector difference should never be high precision");
    #endif
    
            pu.mvd[0] = Mv( pu.mvd[0].hor << imvShift, pu.mvd[0].ver << imvShift );
          }
          unsigned mvp_idx = pu.mvpIdx[0];
          AMVPInfo amvpInfo;
          PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo);
          pu.mvpNum[0] = amvpInfo.numCand;
          pu.mvpIdx[0] = mvp_idx;
          pu.mv    [0] = amvpInfo.mvCand[mvp_idx] + pu.mvd[0];
    
    #if REMOVE_MV_ADAPT_PREC
          pu.mv[0].hor = pu.mv[0].hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
          pu.mv[0].ver = pu.mv[0].ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
    #endif
    
        }
    
        if (pu.interDir != 1 /* PRED_L0 */)
        {
          if( !( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 ) && pu.cu->imv )/* PRED_BI */
          {
    
    #if !REMOVE_MV_ADAPT_PREC
            CHECK(pu.mvd[1].highPrec, "Motion vector difference should never be high precision");
    #endif
    
            pu.mvd[1] = Mv( pu.mvd[1].hor << imvShift, pu.mvd[1].ver << imvShift );
          }
          unsigned mvp_idx = pu.mvpIdx[1];
          AMVPInfo amvpInfo;
          PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo);
          pu.mvpNum[1] = amvpInfo.numCand;
          pu.mvpIdx[1] = mvp_idx;
          pu.mv    [1] = amvpInfo.mvCand[mvp_idx] + pu.mvd[1];
    
    #if REMOVE_MV_ADAPT_PREC
          pu.mv[1].hor = pu.mv[1].hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
          pu.mv[1].ver = pu.mv[1].ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
    #endif
    
    2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
        }
      }
      else
      {
        // this function is never called for merge
        THROW("unexpected");
        PU::getInterMergeCandidates ( pu, mrgCtx );
        PU::restrictBiPredMergeCands( pu, mrgCtx );
    
        mrgCtx.setMergeInfo( pu, pu.mergeIdx );
      }
    
      PU::spanMotionInfo( pu, mrgCtx );
    }
    
    bool PU::isBiPredFromDifferentDir( const PredictionUnit& pu )
    {
      if ( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
      {
        const int iPOC0 = pu.cu->slice->getRefPOC( REF_PIC_LIST_0, pu.refIdx[0] );
        const int iPOC1 = pu.cu->slice->getRefPOC( REF_PIC_LIST_1, pu.refIdx[1] );
        const int iPOC  = pu.cu->slice->getPOC();
        if ( (iPOC - iPOC0)*(iPOC - iPOC1) < 0 )
        {
          return true;
        }
      }
    
      return false;
    }
    
    void PU::restrictBiPredMergeCands( const PredictionUnit &pu, MergeCtx& mergeCtx )
    {
      if( PU::isBipredRestriction( pu ) )
      {
        for( uint32_t mergeCand = 0; mergeCand < mergeCtx.numValidMergeCand; ++mergeCand )
        {
          if( mergeCtx.interDirNeighbours[ mergeCand ] == 3 )
          {
            mergeCtx.interDirNeighbours[ mergeCand ] = 1;
            mergeCtx.mvFieldNeighbours[( mergeCand << 1 ) + 1].setMvField( Mv( 0, 0 ), -1 );
          }
        }
      }
    }
    
    void CU::resetMVDandMV2Int( CodingUnit& cu, InterPrediction *interPred )
    {
      for( auto &pu : CU::traversePUs( cu ) )
      {
        MergeCtx mrgCtx;
    
        if( !pu.mergeFlag )
        {
          unsigned imvShift = cu.imv << 1;
          if( pu.interDir != 2 /* PRED_L1 */ )
          {
            Mv mv        = pu.mv[0];
            Mv mvPred;
            AMVPInfo amvpInfo;
            PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo);
            pu.mvpNum[0] = amvpInfo.numCand;
    
            mvPred       = amvpInfo.mvCand[pu.mvpIdx[0]];
            roundMV      ( mv, imvShift );
            pu.mv[0]     = mv;
            Mv mvDiff    = mv - mvPred;
            pu.mvd[0]    = mvDiff;
          }
          if( pu.interDir != 1 /* PRED_L0 */ )
          {
            Mv mv        = pu.mv[1];
            Mv mvPred;
            AMVPInfo amvpInfo;
            PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo);
            pu.mvpNum[1] = amvpInfo.numCand;
    
            mvPred       = amvpInfo.mvCand[pu.mvpIdx[1]];
            roundMV      ( mv, imvShift );
            Mv mvDiff    = mv - mvPred;
    
            if( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 /* PRED_BI */ )
            {
              pu.mvd[1] = Mv();
              mv = mvPred;
            }
            else
            {
              pu.mvd[1] = mvDiff;
            }
            pu.mv[1] = mv;
          }
    
        }
        else
        {
            PU::getInterMergeCandidates ( pu, mrgCtx );
            PU::restrictBiPredMergeCands( pu, mrgCtx );
    
            mrgCtx.setMergeInfo( pu, pu.mergeIdx );
        }
    
        PU::spanMotionInfo( pu, mrgCtx );
      }
    }
    
    bool CU::hasSubCUNonZeroMVd( const CodingUnit& cu )
    {
      bool bNonZeroMvd = false;
    
      for( const auto &pu : CU::traversePUs( cu ) )
      {
        if( ( !pu.mergeFlag ) && ( !cu.skip ) )
        {
          if( pu.interDir != 2 /* PRED_L1 */ )
          {
            bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getHor() != 0;
            bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getVer() != 0;
          }
          if( pu.interDir != 1 /* PRED_L0 */ )
          {
            if( !pu.cu->cs->slice->getMvdL1ZeroFlag() || pu.interDir != 3 /* PRED_BI */ )
            {
              bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getHor() != 0;
              bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getVer() != 0;
            }
          }
        }
      }
    
      return bNonZeroMvd;
    }
    
    int CU::getMaxNeighboriMVCandNum( const CodingStructure& cs, const Position& pos )
    {
      const int  numDefault     = 0;
      int        maxImvNumCand  = 0;
    
      // Get BCBP of left PU
    #if HEVC_TILES_WPP
      const CodingUnit *cuLeft  = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
    #else
      const CodingUnit *cuLeft  = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), CH_L );
    #endif
      maxImvNumCand = ( cuLeft ) ? cuLeft->imvNumCand : numDefault;
    
      // Get BCBP of above PU
    #if HEVC_TILES_WPP
      const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
    #else
      const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), CH_L );
    #endif
      maxImvNumCand = std::max( maxImvNumCand, ( cuAbove ) ? cuAbove->imvNumCand : numDefault );
    
      return maxImvNumCand;
    }
    
    
    
    
    
    // TU tools
    
    #if HEVC_USE_4x4_DSTVII
    bool TU::useDST(const TransformUnit &tu, const ComponentID &compID)
    {
      return isLuma(compID) && tu.cu->predMode == MODE_INTRA;
    }
    
    #endif
    
    bool TU::isNonTransformedResidualRotated(const TransformUnit &tu, const ComponentID &compID)
    {
      return tu.cs->sps->getSpsRangeExtension().getTransformSkipRotationEnabledFlag() && tu.blocks[compID].width == 4 && tu.cu->predMode == MODE_INTRA;
    }
    
    bool TU::getCbf( const TransformUnit &tu, const ComponentID &compID )
    {
    #if ENABLE_BMS
      return getCbfAtDepth( tu, compID, tu.depth );
    #else
      return tu.cbf[compID];
    #endif
    }
    
    #if ENABLE_BMS
    bool TU::getCbfAtDepth(const TransformUnit &tu, const ComponentID &compID, const unsigned &depth)
    {
      return ((tu.cbf[compID] >> depth) & 1) == 1;
    }
    
    void TU::setCbfAtDepth(TransformUnit &tu, const ComponentID &compID, const unsigned &depth, const bool &cbf)
    {
      // first clear the CBF at the depth
      tu.cbf[compID] &= ~(1  << depth);
      // then set the CBF
      tu.cbf[compID] |= ((cbf ? 1 : 0) << depth);
    }
    #else
    void TU::setCbf( TransformUnit &tu, const ComponentID &compID, const bool &cbf )
    {
      tu.cbf[compID] = cbf;
    }
    #endif
    
    bool TU::hasTransformSkipFlag(const CodingStructure& cs, const CompArea& area)
    {
      uint32_t transformSkipLog2MaxSize = cs.pps->getPpsRangeExtension().getLog2MaxTransformSkipBlockSize();
    
      if( cs.pcv->rectCUs )
      {
        return ( area.width * area.height <= (1 << ( transformSkipLog2MaxSize << 1 )) );
      }
      return ( area.width <= (1 << transformSkipLog2MaxSize) );
    }
    
    uint32_t TU::getGolombRiceStatisticsIndex(const TransformUnit &tu, const ComponentID &compID)
    {
      const bool transformSkip    = tu.transformSkip[compID];
      const bool transquantBypass = tu.cu->transQuantBypass;
    
      //--------
    
      const uint32_t channelTypeOffset = isChroma(compID) ? 2 : 0;
      const uint32_t nonTransformedOffset = (transformSkip || transquantBypass) ? 1 : 0;
    
      //--------
    
      const uint32_t selectedIndex = channelTypeOffset + nonTransformedOffset;
      CHECK( selectedIndex >= RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS, "Invalid golomb rice adaptation statistics set" );
    
      return selectedIndex;
    }
    
    #if HEVC_USE_MDCS
    uint32_t TU::getCoefScanIdx(const TransformUnit &tu, const ComponentID &compID)
    {
      //------------------------------------------------
    
      //this mechanism is available for intra only
    
      if( !CU::isIntra( *tu.cu ) )
      {
        return SCAN_DIAG;
      }
    
      //------------------------------------------------
    
      //check that MDCS can be used for this TU
    
    
      const CompArea &area      = tu.blocks[compID];
      const SPS &sps            = *tu.cs->sps;
      const ChromaFormat format = sps.getChromaFormatIdc();
    
    
      const uint32_t maximumWidth  = MDCS_MAXIMUM_WIDTH  >> getComponentScaleX(compID, format);
      const uint32_t maximumHeight = MDCS_MAXIMUM_HEIGHT >> getComponentScaleY(compID, format);
    
      if ((area.width > maximumWidth) || (area.height > maximumHeight))
      {
        return SCAN_DIAG;
      }
    
      //------------------------------------------------
    
      //otherwise, select the appropriate mode
    
      const PredictionUnit &pu = *tu.cs->getPU( area.pos(), toChannelType( compID ) );
    
      uint32_t uiDirMode = PU::getFinalIntraMode(pu, toChannelType(compID));
    
      //------------------
    
           if (abs((int) uiDirMode - VER_IDX) <= MDCS_ANGLE_LIMIT)
      {
        return SCAN_HOR;
      }
      else if (abs((int) uiDirMode - HOR_IDX) <= MDCS_ANGLE_LIMIT)
      {
        return SCAN_VER;
      }
      else
      {
        return SCAN_DIAG;
      }
    }
    
    #endif
    bool TU::hasCrossCompPredInfo( const TransformUnit &tu, const ComponentID &compID )
    {
      return ( isChroma(compID) && tu.cs->pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf( tu, COMPONENT_Y ) &&
             ( CU::isInter(*tu.cu) || PU::isChromaIntraModeCrossCheckMode( *tu.cs->getPU( tu.blocks[compID].pos(), toChannelType( compID ) ) ) ) );
    }
    
    uint32_t TU::getNumNonZeroCoeffsNonTS( const TransformUnit& tu, const bool bLuma, const bool bChroma )
    {
      uint32_t count = 0;
      for( uint32_t i = 0; i < ::getNumberValidTBlocks( *tu.cs->pcv ); i++ )
      {
        if( tu.blocks[i].valid() && !tu.transformSkip[i] && TU::getCbf( tu, ComponentID( i ) ) )
        {
          if( isLuma  ( tu.blocks[i].compID ) && !bLuma   ) continue;
          if( isChroma( tu.blocks[i].compID ) && !bChroma ) continue;
    
          uint32_t area = tu.blocks[i].area();
          const TCoeff* coeff = tu.getCoeffs( ComponentID( i ) ).buf;
          for( uint32_t j = 0; j < area; j++ )
          {
            count += coeff[j] != 0;
          }
        }
      }
      return count;
    }
    
    bool TU::needsSqrt2Scale( const Size& size )
    {
      return (((g_aucLog2[size.width] + g_aucLog2[size.height]) & 1) == 1);
    }
    
    #if HM_QTBT_AS_IN_JEM_QUANT
    
    bool TU::needsBlockSizeTrafoScale( const Size& size )
    {
      return needsSqrt2Scale( size ) || isNonLog2BlockSize( size );
    }
    #else
    bool TU::needsQP3Offset(const TransformUnit &tu, const ComponentID &compID)
    {
      if( tu.cs->pcv->rectCUs && !tu.transformSkip[compID] )
      {
        return ( ( ( g_aucLog2[tu.blocks[compID].width] + g_aucLog2[tu.blocks[compID].height] ) & 1 ) == 1 );
      }
      return false;
    }
    #endif
    
    
    
    
    
    // other tools
    
    uint32_t getCtuAddr( const Position& pos, const PreCalcValues& pcv )
    {
      return ( pos.x >> pcv.maxCUWidthLog2 ) + ( pos.y >> pcv.maxCUHeightLog2 ) * pcv.widthInCtus;
    }