Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file UnitTool.cpp
* \brief defines operations for basic units
*/
#include "UnitTools.h"
#include "dtrace_next.h"
#include "Unit.h"
#include "Slice.h"
#include "Picture.h"
#include <utility>
#include <algorithm>
// CS tools
uint64_t CS::getEstBits(const CodingStructure &cs)
{
return cs.fracBits >> SCALE_BITS;
}
bool CS::isDualITree( const CodingStructure &cs )
{
return cs.slice->isIntra() && !cs.pcv->ISingleTree;

Karsten Suehring
committed
}
UnitArea CS::getArea( const CodingStructure &cs, const UnitArea &area, const ChannelType chType )
{
#if JVET_O0050_LOCAL_DUAL_TREE
return isDualITree( cs ) || cs.treeType != TREE_D ? area.singleChan( chType ) : area;
#else

Karsten Suehring
committed
return isDualITree( cs ) ? area.singleChan( chType ) : area;

Karsten Suehring
committed
}
void CS::setRefinedMotionField(CodingStructure &cs)
{
for (CodingUnit *cu : cs.cus)
{
for (auto &pu : CU::traversePUs(*cu))
{
PredictionUnit subPu = pu;
int dx, dy, x, y, num = 0;
dy = std::min<int>(pu.lumaSize().height, DMVR_SUBCU_HEIGHT);
dx = std::min<int>(pu.lumaSize().width, DMVR_SUBCU_WIDTH);
if (PU::checkDMVRCondition(pu))
{
for (y = puPos.y; y < (puPos.y + pu.lumaSize().height); y = y + dy)
{
for (x = puPos.x; x < (puPos.x + pu.lumaSize().width); x = x + dx)
{
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu.mv[0] = pu.mv[0];
subPu.mv[1] = pu.mv[1];
subPu.mv[REF_PIC_LIST_0] += pu.mvdL0SubPu[num];
subPu.mv[REF_PIC_LIST_1] -= pu.mvdL0SubPu[num];
subPu.mv[REF_PIC_LIST_0].clipToStorageBitDepth();
subPu.mv[REF_PIC_LIST_1].clipToStorageBitDepth();
pu.mvdL0SubPu[num].setZero();
num++;
PU::spanMotionInfo(subPu);
}
}
}
}

Karsten Suehring
committed
// CU tools
bool CU::isIntra(const CodingUnit &cu)
{
return cu.predMode == MODE_INTRA;
}
bool CU::isInter(const CodingUnit &cu)
{
return cu.predMode == MODE_INTER;
}
bool CU::isIBC(const CodingUnit &cu)
{
return cu.predMode == MODE_IBC;
}
Yung-Hsuan Chao (Jessie)
committed
#if JVET_O0119_BASE_PALETTE_444
bool CU::isPLT(const CodingUnit &cu)
{
return cu.predMode == MODE_PLT;
}
#endif

Karsten Suehring
committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
bool CU::isRDPCMEnabled(const CodingUnit& cu)
{
return cu.cs->sps->getSpsRangeExtension().getRdpcmEnabledFlag(cu.predMode == MODE_INTRA ? RDPCM_SIGNAL_IMPLICIT : RDPCM_SIGNAL_EXPLICIT);
}
bool CU::isLosslessCoded(const CodingUnit &cu)
{
return cu.cs->pps->getTransquantBypassEnabledFlag() && cu.transQuantBypass;
}
bool CU::isSameSlice(const CodingUnit& cu, const CodingUnit& cu2)
{
return cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx();
}
bool CU::isSameTile(const CodingUnit& cu, const CodingUnit& cu2)
{
return cu.tileIdx == cu2.tileIdx;
}
bool CU::isSameSliceAndTile(const CodingUnit& cu, const CodingUnit& cu2)
{
return ( cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx() ) && ( cu.tileIdx == cu2.tileIdx );
}
bool CU::isSameCtu(const CodingUnit& cu, const CodingUnit& cu2)
{
uint32_t ctuSizeBit = g_aucLog2[cu.cs->sps->getMaxCUWidth()];
Position pos1Ctu(cu.lumaPos().x >> ctuSizeBit, cu.lumaPos().y >> ctuSizeBit);
Position pos2Ctu(cu2.lumaPos().x >> ctuSizeBit, cu2.lumaPos().y >> ctuSizeBit);
return pos1Ctu.x == pos2Ctu.x && pos1Ctu.y == pos2Ctu.y;
}
uint32_t CU::getIntraSizeIdx(const CodingUnit &cu)
{
uint8_t uiWidth = cu.lumaSize().width;
uint32_t uiCnt = 0;
while (uiWidth)
{
uiCnt++;
uiWidth >>= 1;
}
uiCnt -= 2;
return uiCnt > 6 ? 6 : uiCnt;
}
bool CU::isLastSubCUOfCtu( const CodingUnit &cu )
{
const SPS &sps = *cu.cs->sps;
#if JVET_O0050_LOCAL_DUAL_TREE
const Area cuAreaY = cu.isSepTree() ? Area( recalcPosition( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].pos() ), recalcSize( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].size() ) ) : (const Area&)cu.Y();
#else

Karsten Suehring
committed
const Area cuAreaY = CS::isDualITree( *cu.cs ) ? Area( recalcPosition( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].pos() ), recalcSize( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].size() ) ) : ( const Area& ) cu.Y();

Karsten Suehring
committed
return ( ( ( ( cuAreaY.x + cuAreaY.width ) & cu.cs->pcv->maxCUWidthMask ) == 0 || cuAreaY.x + cuAreaY.width == sps.getPicWidthInLumaSamples() ) &&
( ( ( cuAreaY.y + cuAreaY.height ) & cu.cs->pcv->maxCUHeightMask ) == 0 || cuAreaY.y + cuAreaY.height == sps.getPicHeightInLumaSamples() ) );
}
uint32_t CU::getCtuAddr( const CodingUnit &cu )
{
return getCtuAddr( cu.blocks[cu.chType].lumaPos(), *cu.cs->pcv );
}
int CU::predictQP( const CodingUnit& cu, const int prevQP )
{
const CodingStructure &cs = *cu.cs;
Brian Heng
committed
if ( !cu.blocks[cu.chType].x && !( cu.blocks[cu.chType].y & ( cs.pcv->maxCUHeightMask >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) && ( cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType) != NULL ) && CU::isSameSliceAndTile( *cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType), cu ) )
{
return ( ( cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType ) )->qp );
}
else
{
const int a = ( cu.blocks[cu.chType].y & ( cs.pcv->maxCUHeightMask >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU(cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType))->qp : prevQP;
const int b = ( cu.blocks[cu.chType].x & ( cs.pcv->maxCUWidthMask >> getChannelTypeScaleX( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU(cu.blocks[cu.chType].pos().offset( -1, 0 ), cu.chType))->qp : prevQP;
return ( a + b + 1 ) >> 1;
}

Karsten Suehring
committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
}
uint32_t CU::getNumPUs( const CodingUnit& cu )
{
uint32_t cnt = 0;
PredictionUnit *pu = cu.firstPU;
do
{
cnt++;
} while( ( pu != cu.lastPU ) && ( pu = pu->next ) );
return cnt;
}
void CU::addPUs( CodingUnit& cu )
{
cu.cs->addPU( CS::getArea( *cu.cs, cu, cu.chType ), cu.chType );
}
PartSplit CU::getSplitAtDepth( const CodingUnit& cu, const unsigned depth )
{
if( depth >= cu.depth ) return CU_DONT_SPLIT;
const PartSplit cuSplitType = PartSplit( ( cu.splitSeries >> ( depth * SPLIT_DMULT ) ) & SPLIT_MASK );
if ( cuSplitType == CU_QUAD_SPLIT ) return CU_QUAD_SPLIT;
else if( cuSplitType == CU_HORZ_SPLIT ) return CU_HORZ_SPLIT;
else if( cuSplitType == CU_VERT_SPLIT ) return CU_VERT_SPLIT;
else if( cuSplitType == CU_TRIH_SPLIT ) return CU_TRIH_SPLIT;
else if( cuSplitType == CU_TRIV_SPLIT ) return CU_TRIV_SPLIT;
else { THROW( "Unknown split mode" ); return CU_QUAD_SPLIT; }
}
#if JVET_O0050_LOCAL_DUAL_TREE
ModeType CU::getModeTypeAtDepth( const CodingUnit& cu, const unsigned depth )
{
ModeType modeType = ModeType( (cu.modeTypeSeries >> (depth * 3)) & 0x07 );
CHECK( depth > cu.depth, " depth is wrong" );
return modeType;
}
#endif

Karsten Suehring
committed
bool CU::hasNonTsCodedBlock( const CodingUnit& cu )
{
bool hasAnyNonTSCoded = false;
for( auto &currTU : traverseTUs( cu ) )
{
for( uint32_t i = 0; i < ::getNumberValidTBlocks( *cu.cs->pcv ); i++ )
{
hasAnyNonTSCoded |= ( currTU.blocks[i].valid() && ( isLuma(ComponentID(i)) ? currTU.mtsIdx != MTS_SKIP : true ) && TU::getCbf( currTU, ComponentID( i ) ) );

Karsten Suehring
committed
}
}
return hasAnyNonTSCoded;
}
#if !JVET_O0472_LFNST_SIGNALLING_LAST_SCAN_POS
uint32_t CU::getNumNonZeroCoeffNonTs( const CodingUnit& cu, const bool lumaFlag, const bool chromaFlag )

Karsten Suehring
committed
{
uint32_t count = 0;
for( auto &currTU : traverseTUs( cu ) )
{
count += TU::getNumNonZeroCoeffsNonTS( currTU, lumaFlag, chromaFlag );

Karsten Suehring
committed
}
return count;
}

Karsten Suehring
committed
uint32_t CU::getNumNonZeroCoeffNonTsCorner8x8( const CodingUnit& cu, const bool lumaFlag, const bool chromaFlag )
{
uint32_t count = 0;
for( auto &currTU : traverseTUs( cu ) )
{
count += TU::getNumNonZeroCoeffsNonTSCorner8x8( currTU, lumaFlag, chromaFlag );
}
return count;
}
bool CU::divideTuInRows( const CodingUnit &cu )
{
CHECK( cu.ispMode != HOR_INTRA_SUBPARTITIONS && cu.ispMode != VER_INTRA_SUBPARTITIONS, "Intra Subpartitions type not recognized!" );
return cu.ispMode == HOR_INTRA_SUBPARTITIONS ? true : false;
}
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
bool CU::firstTestISPHorSplit( const int width, const int height, const ComponentID compID, const CodingUnit *cuLeft, const CodingUnit *cuAbove )
{
//this function decides which split mode (horizontal or vertical) is tested first (encoder only)
//we check the logarithmic aspect ratios of the block
int aspectRatio = g_aucLog2[width] - g_aucLog2[height];
if( aspectRatio > 0 )
{
return true;
}
else if( aspectRatio < 0 )
{
return false;
}
else //if (aspectRatio == 0)
{
//we gather data from the neighboring CUs
const int cuLeftWidth = cuLeft != nullptr ? cuLeft->blocks[compID].width : -1;
const int cuLeftHeight = cuLeft != nullptr ? cuLeft->blocks[compID].height : -1;
const int cuAboveWidth = cuAbove != nullptr ? cuAbove->blocks[compID].width : -1;
const int cuAboveHeight = cuAbove != nullptr ? cuAbove->blocks[compID].height : -1;
const int cuLeft1dSplit = cuLeft != nullptr && cuLeft->predMode == MODE_INTRA ? cuLeft->ispMode : 0;
const int cuAbove1dSplit = cuAbove != nullptr && cuAbove->predMode == MODE_INTRA ? cuAbove->ispMode : 0;
if( cuLeftWidth != -1 && cuAboveWidth == -1 )
{
int cuLeftAspectRatio = g_aucLog2[cuLeftWidth] - g_aucLog2[cuLeftHeight];
return cuLeftAspectRatio < 0 ? false : cuLeftAspectRatio > 0 ? true : cuLeft1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeftWidth == -1 && cuAboveWidth != -1 )
{
int cuAboveAspectRatio = g_aucLog2[cuAboveWidth] - g_aucLog2[cuAboveHeight];
return cuAboveAspectRatio < 0 ? false : cuAboveAspectRatio > 0 ? true : cuAbove1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeftWidth != -1 && cuAboveWidth != -1 )
{
int cuLeftAspectRatio = g_aucLog2[cuLeftWidth] - g_aucLog2[cuLeftHeight];
int cuAboveAspectRatio = g_aucLog2[cuAboveWidth] - g_aucLog2[cuAboveHeight];
if( cuLeftAspectRatio < 0 && cuAboveAspectRatio < 0 )
{
return false;
}
else if( cuLeftAspectRatio > 0 && cuAboveAspectRatio > 0 )
{
return true;
}
else if( cuLeftAspectRatio == 0 && cuAboveAspectRatio == 0 )
{
if( cuLeft1dSplit != 0 && cuAbove1dSplit != 0 )
{
return cuLeft1dSplit == VER_INTRA_SUBPARTITIONS && cuAbove1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeft1dSplit != 0 && cuAbove1dSplit == 0 )
{
return cuLeft1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeft1dSplit == 0 && cuAbove1dSplit != 0 )
{
return cuAbove1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
return true;
}
else
{
return cuLeftAspectRatio > cuAboveAspectRatio ? cuLeftAspectRatio > 0 : cuAboveAspectRatio > 0;
}
//return true;
}
return true;
}
}
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
PartSplit CU::getISPType( const CodingUnit &cu, const ComponentID compID )
{
if( cu.ispMode && isLuma( compID ) )
{
const bool tuIsDividedInRows = CU::divideTuInRows( cu );
return tuIsDividedInRows ? TU_1D_HORZ_SPLIT : TU_1D_VERT_SPLIT;
}
return TU_NO_ISP;
}
bool CU::isISPLast( const CodingUnit &cu, const CompArea &tuArea, const ComponentID compID )
{
PartSplit partitionType = CU::getISPType( cu, compID );
Area originalArea = cu.blocks[compID];
switch( partitionType )
{
case TU_1D_HORZ_SPLIT:
return tuArea.y + tuArea.height == originalArea.y + originalArea.height;
case TU_1D_VERT_SPLIT:
return tuArea.x + tuArea.width == originalArea.x + originalArea.width;
default:
THROW( "Unknown ISP processing order type!" );
return false;
}
}
bool CU::isISPFirst( const CodingUnit &cu, const CompArea &tuArea, const ComponentID compID )
{
return tuArea == cu.firstTU->blocks[compID];
}
Santiago de Luxán Hernández
committed
bool CU::canUseISP( const CodingUnit &cu, const ComponentID compID )
{
const int width = cu.blocks[compID].width;
const int height = cu.blocks[compID].height;
#if MAX_TB_SIZE_SIGNALLING
const int maxTrSize = cu.cs->sps->getMaxTbSize();
#else
const int maxTrSize = MAX_TB_SIZEY;
#endif
Santiago de Luxán Hernández
committed
return CU::canUseISP( width, height, maxTrSize );
Santiago de Luxán Hernández
committed
bool CU::canUseISP( const int width, const int height, const int maxTrSize )
Santiago de Luxán Hernández
committed
bool notEnoughSamplesToSplit = ( g_aucLog2[width] + g_aucLog2[height] <= ( g_aucLog2[MIN_TB_SIZEY] << 1 ) );
bool cuSizeLargerThanMaxTrSize = width > maxTrSize || height > maxTrSize;
if ( notEnoughSamplesToSplit || cuSizeLargerThanMaxTrSize )
Santiago de Luxán Hernández
committed
return false;
Santiago de Luxán Hernández
committed
return true;
}
uint32_t CU::getISPSplitDim( const int width, const int height, const PartSplit ispType )
{
bool divideTuInRows = ispType == TU_1D_HORZ_SPLIT;
uint32_t splitDimensionSize, nonSplitDimensionSize, partitionSize, divShift = 2;
if( divideTuInRows )
{
splitDimensionSize = height;
nonSplitDimensionSize = width;
}
else
{
splitDimensionSize = width;
nonSplitDimensionSize = height;
}

Karsten Suehring
committed
const int minNumberOfSamplesPerCu = 1 << ( ( g_aucLog2[MIN_TB_SIZEY] << 1 ) );
const int factorToMinSamples = nonSplitDimensionSize < minNumberOfSamplesPerCu ? minNumberOfSamplesPerCu >> g_aucLog2[nonSplitDimensionSize] : 1;
partitionSize = ( splitDimensionSize >> divShift ) < factorToMinSamples ? factorToMinSamples : ( splitDimensionSize >> divShift );
CHECK( g_aucLog2[partitionSize] + g_aucLog2[nonSplitDimensionSize] < g_aucLog2[minNumberOfSamplesPerCu], "A partition has less than the minimum amount of samples!" );
return partitionSize;
}

Karsten Suehring
committed
bool CU::allLumaCBFsAreZero(const CodingUnit& cu)
{
if (!cu.ispMode)
{
return TU::getCbf(*cu.firstTU, COMPONENT_Y) == false;
}
else
{
int numTotalTUs = cu.ispMode == HOR_INTRA_SUBPARTITIONS ? cu.lheight() >> g_aucLog2[cu.firstTU->lheight()] : cu.lwidth() >> g_aucLog2[cu.firstTU->lwidth()];
TransformUnit* tuPtr = cu.firstTU;
for (int tuIdx = 0; tuIdx < numTotalTUs; tuIdx++)
{
if (TU::getCbf(*tuPtr, COMPONENT_Y) == true)
{
return false;
}
tuPtr = tuPtr->next;
}
return true;
}
}
#endif

Karsten Suehring
committed
PUTraverser CU::traversePUs( CodingUnit& cu )
{
return PUTraverser( cu.firstPU, cu.lastPU->next );
}
TUTraverser CU::traverseTUs( CodingUnit& cu )
{
return TUTraverser( cu.firstTU, cu.lastTU->next );
}
cPUTraverser CU::traversePUs( const CodingUnit& cu )
{
return cPUTraverser( cu.firstPU, cu.lastPU->next );
}
cTUTraverser CU::traverseTUs( const CodingUnit& cu )
{
return cTUTraverser( cu.firstTU, cu.lastTU->next );
}
// PU tools
int PU::getIntraMPMs( const PredictionUnit &pu, unsigned* mpm, const ChannelType &channelType /*= CHANNEL_TYPE_LUMA*/ )
{
const int numMPMs = NUM_MOST_PROBABLE_MODES;

Karsten Suehring
committed
{
CHECK(channelType != CHANNEL_TYPE_LUMA, "Not harmonized yet");

Karsten Suehring
committed
int numCand = -1;
int leftIntraDir = PLANAR_IDX, aboveIntraDir = PLANAR_IDX;
const CompArea &area = pu.block(getFirstComponentOfChannel(channelType));
const Position posRT = area.topRight();
const Position posLB = area.bottomLeft();
// Get intra direction of left PU
const PredictionUnit *puLeft = pu.cs->getPURestricted(posLB.offset(-1, 0), pu, channelType);
if (puLeft && CU::isIntra(*puLeft->cu))
{
leftIntraDir = PU::getIntraDirLuma( *puLeft );
}
// Get intra direction of above PU
const PredictionUnit *puAbove = pu.cs->getPURestricted(posRT.offset(0, -1), pu, channelType);
if (puAbove && CU::isIntra(*puAbove->cu) && CU::isSameCtu(*pu.cu, *puAbove->cu))
{
aboveIntraDir = PU::getIntraDirLuma( *puAbove );
}
CHECK(2 >= numMPMs, "Invalid number of most probable modes");
mpm[0] = PLANAR_IDX;
mpm[1] = DC_IDX;
mpm[2] = VER_IDX;
mpm[3] = HOR_IDX;
mpm[4] = VER_IDX - 4;
mpm[5] = VER_IDX + 4;
numCand = 1;
if (leftIntraDir > DC_IDX)
mpm[0] = PLANAR_IDX;
mpm[1] = leftIntraDir;
mpm[2] = ((leftIntraDir + offset) % mod) + 2;
mpm[3] = ((leftIntraDir - 1) % mod) + 2;
mpm[4] = ((leftIntraDir + offset - 1) % mod) + 2;
mpm[5] = ( leftIntraDir % mod) + 2;
#else
mpm[4] = DC_IDX;
mpm[5] = ((leftIntraDir + offset - 1) % mod) + 2;
int maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
if ((leftIntraDir > DC_IDX) && (aboveIntraDir > DC_IDX))
{
mpm[0] = PLANAR_IDX;
mpm[1] = leftIntraDir;
mpm[2] = aboveIntraDir;
maxCandModeIdx = mpm[1] > mpm[2] ? 1 : 2;
int minCandModeIdx = mpm[1] > mpm[2] ? 2 : 1;
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
#if JVET_O0925_MIP_SIMPLIFICATIONS
if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 1)
{
mpm[3] = ((mpm[minCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((mpm[minCandModeIdx] + offset - 1) % mod) + 2;
}
else if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] >= 62)
{
mpm[3] = ((mpm[minCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[5] = ( mpm[minCandModeIdx] % mod) + 2;
}
else if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 2)
{
mpm[3] = ((mpm[minCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((mpm[minCandModeIdx] + offset) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
}
else
{
mpm[3] = ((mpm[minCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((mpm[minCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
}
#else
if ((mpm[maxCandModeIdx] - mpm[minCandModeIdx] < 63) && (mpm[maxCandModeIdx] - mpm[minCandModeIdx] > 1))
{
mpm[4] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
}
else
{
mpm[4] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx]) % mod) + 2;
}
}
else if (leftIntraDir + aboveIntraDir >= 2)
{
mpm[0] = PLANAR_IDX;
mpm[1] = (leftIntraDir < aboveIntraDir) ? aboveIntraDir : leftIntraDir;
maxCandModeIdx = 1;
#if JVET_O0925_MIP_SIMPLIFICATIONS
mpm[2] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[3] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;
mpm[5] = ( mpm[maxCandModeIdx] % mod) + 2;
#else
mpm[3] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;

Karsten Suehring
committed
for (int i = 0; i < numMPMs; i++)
{
CHECK(mpm[i] >= NUM_LUMA_MODE, "Invalid MPM");
}
CHECK(numCand == 0, "No candidates found");
return numCand;
}
}
bool PU::isMIP(const PredictionUnit &pu, const ChannelType &chType)
{
return (chType == CHANNEL_TYPE_LUMA && pu.cu->mipFlag);
}
int PU::getMipSizeId(const PredictionUnit &pu)
{
if ((pu.lwidth() == 4) && (pu.lheight() == 4))
{
}
else if (pu.lwidth() <= 8 && pu.lheight() <= 8)
{
return 1; // MIP with 16x8 matrix
}
else
{
return 2; // MIP with 64x8 matrix
}
}
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
int PU::getMipMPMs(const PredictionUnit &pu, unsigned *mpm)
{
const CompArea &area = pu.block( getFirstComponentOfChannel( CHANNEL_TYPE_LUMA ) );
const Position &pos = area.pos();
bool realMode = false;
// Get intra mode of left PU
int leftIntraMode = -1;
const PredictionUnit *puLeft = pu.cs->getPURestricted( pos.offset( -1, 0 ), pu, CHANNEL_TYPE_LUMA );
if( puLeft && CU::isIntra( *puLeft->cu ) )
{
if( PU::isMIP( *puLeft ) )
{
if (getMipSizeId(*puLeft) == getMipSizeId(pu))
{
leftIntraMode = puLeft->intraDir[CHANNEL_TYPE_LUMA];
realMode = true;
}
}
else
{
leftIntraMode = g_mapAngular33ToMip[getMipSizeId(pu)][g_intraMode65to33AngMapping[puLeft->intraDir[CHANNEL_TYPE_LUMA]]];
}
}
// Get intra mode of above PU
int aboveIntraMode = -1;
const PredictionUnit *puAbove = pu.cs->getPURestricted( pos.offset( 0, -1 ), pu, CHANNEL_TYPE_LUMA );
if( puAbove && CU::isIntra( *puAbove->cu ) && CU::isSameCtu(*pu.cu, *puAbove->cu) )
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
{
if( PU::isMIP( *puAbove ) )
{
if (getMipSizeId(*puAbove) == getMipSizeId(pu))
{
aboveIntraMode = puAbove->intraDir[CHANNEL_TYPE_LUMA];
realMode = true;
}
}
else
{
aboveIntraMode = g_mapAngular33ToMip[getMipSizeId(pu)][g_intraMode65to33AngMapping[puAbove->intraDir[CHANNEL_TYPE_LUMA]]];
}
}
// derive MPMs
CHECKD(NUM_MPM_MIP != 3, "Error: wrong number of MPMs for MIP");
const int* modeList = g_sortedMipMpms[getMipSizeId(pu)];
int numCand = 0;
if( leftIntraMode == aboveIntraMode )
{
if( leftIntraMode > -1 )
{
mpm[0] = leftIntraMode;
numCand = 1;
if( leftIntraMode != modeList[0] )
{
mpm[1] = modeList[0];
mpm[2] = (leftIntraMode != modeList[1]) ? modeList[1] : modeList[2];
}
else
{
mpm[1] = modeList[1];
mpm[2] = modeList[2];
}
}
else
{
mpm[0] = modeList[0];
mpm[1] = modeList[1];
mpm[2] = modeList[2];
}
}
else
{
if( leftIntraMode > -1 && aboveIntraMode > -1 )
{
mpm[0] = leftIntraMode;
mpm[1] = aboveIntraMode;
numCand = 2;
int index = 0;
for( int i = 0; i < 3; i++ )
{
if( (leftIntraMode != modeList[i]) && (aboveIntraMode != modeList[i]) )
{
index = i;
break;
}
}
CHECK( index > 2, "Error" );
mpm[2] = modeList[index];
}
else
{
mpm[0] = leftIntraMode > -1 ? leftIntraMode : aboveIntraMode;
numCand = 1;
if( mpm[0] != modeList[0] )
{
mpm[1] = modeList[0];
mpm[2] = (mpm[0] != modeList[1]) ? modeList[1] : modeList[2];
}
else
{
mpm[1] = modeList[1];
mpm[2] = modeList[2];
}
}
}
return (realMode ? numCand : 0);
}
uint32_t PU::getIntraDirLuma( const PredictionUnit &pu )
{
if (isMIP(pu))
{
#if JVET_O0925_MIP_SIMPLIFICATIONS
return PLANAR_IDX;
#else
return g_mapMipToAngular65[getMipSizeId(pu)][pu.intraDir[CHANNEL_TYPE_LUMA]];
}
else
{
return pu.intraDir[CHANNEL_TYPE_LUMA];
}
}
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
AvailableInfo PU::getAvailableInfoLuma(const PredictionUnit &pu)
{
const Area puArea = pu.Y();
const CodingStructure &cs = *pu.cs;
CHECK(cs.pps->getConstrainedIntraPred(), "Error: constrained intra prediction not supported");
AvailableInfo availInfo(0, 0);
// above
const int unitWidth = cs.pcv->minCUWidth;
const int numAboveUnits = (puArea.width + (unitWidth - 1)) / unitWidth;
for (int uX = 0; uX < numAboveUnits; uX++)
{
const Position topPos = puArea.offset(availInfo.maxPosTop, -1);
const CodingUnit* pcCUAbove = cs.isDecomp(topPos, CHANNEL_TYPE_LUMA) ? cs.getCURestricted(topPos, *(pu.cu), CHANNEL_TYPE_LUMA) : nullptr;
if (!pcCUAbove) { break; }
availInfo.maxPosTop += unitWidth;
}
// left
const int unitHeight = cs.pcv->minCUHeight;
const int numLeftUnits = (puArea.height + (unitHeight - 1)) / unitHeight;
for (int uY = 0; uY < numLeftUnits; uY++)
{
const Position leftPos = puArea.offset(-1, availInfo.maxPosLeft);
const CodingUnit* pcCULeft = cs.isDecomp(leftPos, CHANNEL_TYPE_LUMA) ? cs.getCURestricted(leftPos, *(pu.cu), CHANNEL_TYPE_LUMA) : nullptr;
if (!pcCULeft) { break; }
availInfo.maxPosLeft += unitHeight;
}
CHECKD(availInfo.maxPosTop > puArea.width || availInfo.maxPosLeft > puArea.height, "Error");
return availInfo;
}

Karsten Suehring
committed
void PU::getIntraChromaCandModes( const PredictionUnit &pu, unsigned modeList[NUM_CHROMA_MODE] )
{
{
modeList[ 0 ] = PLANAR_IDX;
modeList[ 1 ] = VER_IDX;
modeList[ 2 ] = HOR_IDX;
modeList[ 3 ] = DC_IDX;
modeList[4] = LM_CHROMA_IDX;
modeList[5] = MDLM_L_IDX;
modeList[6] = MDLM_T_IDX;
modeList[7] = DM_CHROMA_IDX;

Karsten Suehring
committed
#if JVET_O0219_LFNST_TRANSFORM_SET_FOR_LMCMODE
const uint32_t lumaMode = getCoLocatedIntraLumaMode(pu);
#else
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
#if JVET_O0050_LOCAL_DUAL_TREE
const PredictionUnit *lumaPU = pu.cu->isSepTree() ? pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : &pu;
#else
const PredictionUnit *lumaPU = CS::isDualITree( *pu.cs ) ? pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : &pu;
const uint32_t lumaMode = PU::getIntraDirLuma( *lumaPU );
#endif

Karsten Suehring
committed
for( int i = 0; i < 4; i++ )
{
if( lumaMode == modeList[i] )
{
modeList[i] = VDIA_IDX;
break;
}
}
}
}
bool PU::isLMCMode(unsigned mode)
{
return (mode >= LM_CHROMA_IDX && mode <= MDLM_T_IDX);

Karsten Suehring
committed
}
bool PU::isLMCModeEnabled(const PredictionUnit &pu, unsigned mode)
{
Yin Zhao
committed
#if JVET_O1124_ALLOW_CCLM_COND
if ( pu.cs->sps->getUseLMChroma() && pu.cu->checkCCLMAllowed() )
#else
if ( pu.cs->sps->getUseLMChroma() )
Yin Zhao
committed
#endif

Karsten Suehring
committed
{
return true;
}
return false;
}
int PU::getLMSymbolList(const PredictionUnit &pu, int *modeList)

Karsten Suehring
committed
{

Karsten Suehring
committed
modeList[idx++] = LM_CHROMA_IDX;
modeList[idx++] = MDLM_L_IDX;
modeList[idx++] = MDLM_T_IDX;
return idx;

Karsten Suehring
committed
}
int PU::getLMSymbolList(const PredictionUnit &pu, int *modeList)

Karsten Suehring
committed
{

Karsten Suehring
committed
modeList[idx++] = LM_CHROMA_IDX;
modeList[idx++] = -1;
modeList[idx++] = MDLM_L_IDX;
modeList[idx++] = MDLM_T_IDX;
return idx;

Karsten Suehring
committed
}

Karsten Suehring
committed
bool PU::isChromaIntraModeCrossCheckMode( const PredictionUnit &pu )
{
return pu.intraDir[CHANNEL_TYPE_CHROMA] == DM_CHROMA_IDX;
}
int PU::getNarrowShape(const int width, const int height)
{
int longSide = (width > height) ? width : height;
int shortSide = (width > height) ? height : width;
if (longSide > (2 * shortSide))
{
if (longSide == width)
return 1;
else
return 2;
}
else
{
return 0;
}
}

Karsten Suehring
committed
uint32_t PU::getFinalIntraMode( const PredictionUnit &pu, const ChannelType &chType )
{
uint32_t uiIntraMode = pu.intraDir[chType];
if( uiIntraMode == DM_CHROMA_IDX && !isLuma( chType ) )
{
#if JVET_O0219_LFNST_TRANSFORM_SET_FOR_LMCMODE
uiIntraMode = getCoLocatedIntraLumaMode(pu);
#else
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
#if JVET_O0050_LOCAL_DUAL_TREE
const PredictionUnit &lumaPU = pu.cu->isSepTree() ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA );
#else
const PredictionUnit &lumaPU = CS::isDualITree( *pu.cs ) ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA );
uiIntraMode = PU::getIntraDirLuma( lumaPU );
#endif

Karsten Suehring
committed
}
if( pu.chromaFormat == CHROMA_422 && !isLuma( chType ) && uiIntraMode < NUM_LUMA_MODE ) // map directional, planar and dc

Karsten Suehring
committed
{
uiIntraMode = g_chroma422IntraAngleMappingTable[uiIntraMode];
}
return uiIntraMode;
}
#if JVET_O0219_LFNST_TRANSFORM_SET_FOR_LMCMODE
uint32_t PU::getCoLocatedIntraLumaMode( const PredictionUnit &pu )
{
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
#if JVET_O0050_LOCAL_DUAL_TREE
const PredictionUnit &lumaPU = pu.cu->isSepTree() ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA );
#else
const PredictionUnit &lumaPU = CS::isDualITree( *pu.cs ) ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA );
return PU::getIntraDirLuma( lumaPU );
}
#endif
int PU::getWideAngIntraMode( const TransformUnit &tu, const uint32_t dirMode, const ComponentID compID )
{
if( dirMode < 2 )
{
return ( int ) dirMode;
}
CodingStructure& cs = *tu.cs;
const CompArea& area = tu.blocks[ compID ];
PelBuf pred = cs.getPredBuf( area );
int width = int( pred.width );
int height = int( pred.height );
int modeShift[ ] = { 0, 6, 10, 12, 14, 15 };
int deltaSize = abs( g_aucLog2[ width ] - g_aucLog2[ height ] );
int predMode = dirMode;
if( width > height && dirMode < 2 + modeShift[ deltaSize ] )
{
predMode += ( VDIA_IDX - 1 );