Skip to content
Snippets Groups Projects
UnitTools.cpp 85.7 KiB
Newer Older
  • Learn to ignore specific revisions
  •   // get Inter Dir
      interDirNeighbours = puFirstNeighbour->getMotionInfo().interDir;
    
      pu.cu->affineType = puFirstNeighbour->cu->affineType;
    
      // derive Mv from neighbor affine block
      Mv cMv[3];
      if ( interDirNeighbours != 2 )
      {
        xInheritedAffineMv( pu, puFirstNeighbour, REF_PIC_LIST_0, cMv );
        for ( int mvNum = 0; mvNum < 3; mvNum++ )
        {
          mvFieldNeighbours[0][mvNum].setMvField( cMv[mvNum], puFirstNeighbour->refIdx[0] );
        }
      }
    
      if ( pu.cs->slice->isInterB() )
      {
        if ( interDirNeighbours != 1 )
        {
          xInheritedAffineMv( pu, puFirstNeighbour, REF_PIC_LIST_1, cMv );
          for ( int mvNum = 0; mvNum < 3; mvNum++ )
          {
            mvFieldNeighbours[1][mvNum].setMvField( cMv[mvNum], puFirstNeighbour->refIdx[1] );
          }
        }
      }
    }
    
    void PU::setAllAffineMvField( PredictionUnit &pu, MvField *mvField, RefPicList eRefList )
    {
      // Set Mv
      Mv mv[3];
      for ( int i = 0; i < 3; i++ )
      {
        mv[i] = mvField[i].mv;
      }
      setAllAffineMv( pu, mv[0], mv[1], mv[2], eRefList );
    
      // Set RefIdx
      CHECK( mvField[0].refIdx != mvField[1].refIdx || mvField[0].refIdx != mvField[2].refIdx, "Affine mv corners don't have the same refIdx." );
      pu.refIdx[eRefList] = mvField[0].refIdx;
    }
    
    
    void PU::setAllAffineMv( PredictionUnit& pu, Mv affLT, Mv affRT, Mv affLB, RefPicList eRefList 
    #if REMOVE_MV_ADAPT_PREC
      , bool setHighPrec
    #endif
    )
    
    #if REMOVE_MV_ADAPT_PREC
      if (setHighPrec)
      {
        affLT.hor = affLT.hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
        affLT.ver = affLT.ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
        affRT.hor = affRT.hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
        affRT.ver = affRT.ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
        affLB.hor = affLB.hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
        affLB.ver = affLB.ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
      }
    #else
    
      affLT.setHighPrec();
      affRT.setHighPrec();
      affLB.setHighPrec();
    
      int deltaMvHorX, deltaMvHorY, deltaMvVerX, deltaMvVerY;
      deltaMvHorX = (affRT - affLT).getHor() << (shift - g_aucLog2[width]);
      deltaMvHorY = (affRT - affLT).getVer() << (shift - g_aucLog2[width]);
      int height = pu.Y().height;
      if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
      {
        deltaMvVerX = (affLB - affLT).getHor() << (shift - g_aucLog2[height]);
        deltaMvVerY = (affLB - affLT).getVer() << (shift - g_aucLog2[height]);
      }
      else
      {
        deltaMvVerX = -deltaMvHorY;
        deltaMvVerY = deltaMvHorX;
      }
    
      int mvScaleHor = affLT.getHor() << shift;
      int mvScaleVer = affLT.getVer() << shift;
    
      int blockWidth = AFFINE_MIN_BLOCK_SIZE;
      int blockHeight = AFFINE_MIN_BLOCK_SIZE;
      const int halfBW = blockWidth >> 1;
      const int halfBH = blockHeight >> 1;
    
      MotionBuf mb = pu.getMotionBuf();
      int mvScaleTmpHor, mvScaleTmpVer;
      for ( int h = 0; h < pu.Y().height; h += blockHeight )
      {
        for ( int w = 0; w < pu.Y().width; w += blockWidth )
        {
          mvScaleTmpHor = mvScaleHor + deltaMvHorX * (halfBW + w) + deltaMvVerX * (halfBH + h);
          mvScaleTmpVer = mvScaleVer + deltaMvHorY * (halfBW + w) + deltaMvVerY * (halfBH + h);
          roundAffineMv( mvScaleTmpHor, mvScaleTmpVer, shift );
    
          for ( int y = (h >> MIN_CU_LOG2); y < ((h + blockHeight) >> MIN_CU_LOG2); y++ )
          {
            for ( int x = (w >> MIN_CU_LOG2); x < ((w + blockHeight) >> MIN_CU_LOG2); x++ )
            {
    
    #if REMOVE_MV_ADAPT_PREC
              mb.at(x, y).mv[eRefList].hor = mvScaleTmpHor;
              mb.at(x, y).mv[eRefList].ver = mvScaleTmpVer;
    #else
              mb.at(x, y).mv[eRefList] = Mv(mvScaleTmpHor, mvScaleTmpVer, true);
    #endif
    
            }
          }
        }
      }
    
      // Set AffineMvField for affine motion compensation LT, RT, LB and RB
      mb.at(            0,             0 ).mv[eRefList] = affLT;
      mb.at( mb.width - 1,             0 ).mv[eRefList] = affRT;
    
      if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
      {
        mb.at( 0, mb.height - 1 ).mv[eRefList] = affLB;
      }
    }
    
    static bool deriveScaledMotionTemporal( const Slice&      slice,
                                            const Position&   colPos,
                                            const Picture*    pColPic,
                                            const RefPicList  eCurrRefPicList,
                                            Mv&         cColMv,
                                            const RefPicList  eFetchRefPicList)
    {
      const MotionInfo &mi = pColPic->cs->getMotionInfo(colPos);
      const Slice *pColSlice = nullptr;
    
      for (const auto &pSlice : pColPic->slices)
      {
        if (pSlice->getIndependentSliceIdx() == mi.sliceIdx)
        {
          pColSlice = pSlice;
          break;
        }
      }
    
      CHECK(pColSlice == nullptr, "Couldn't find the colocated slice");
    
      int iColPOC, iColRefPOC, iCurrPOC, iCurrRefPOC, iScale;
      bool bAllowMirrorMV = true;
      RefPicList eColRefPicList = slice.getCheckLDC() ? eCurrRefPicList : RefPicList(1 - eFetchRefPicList);
      if (pColPic == slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx()))
      {
        eColRefPicList = eCurrRefPicList;   //67 -> disable, 64 -> enable
        bAllowMirrorMV = false;
      }
    
      // Although it might make sense to keep the unavailable motion field per direction still be unavailable, I made the MV prediction the same way as in TMVP
      // So there is an interaction between MV0 and MV1 of the corresponding blocks identified by TV.
    
      // Grab motion and do necessary scaling.{{
      iCurrPOC = slice.getPOC();
    
      int iColRefIdx = mi.refIdx[eColRefPicList];
    
      if (iColRefIdx < 0 && (slice.getCheckLDC() || bAllowMirrorMV))
      {
        eColRefPicList = RefPicList(1 - eColRefPicList);
        iColRefIdx = mi.refIdx[eColRefPicList];
    
        if (iColRefIdx < 0)
        {
          return false;
        }
      }
    
      if (iColRefIdx >= 0 && slice.getNumRefIdx(eCurrRefPicList) > 0)
      {
        iColPOC = pColSlice->getPOC();
        iColRefPOC = pColSlice->getRefPOC(eColRefPicList, iColRefIdx);
        ///////////////////////////////////////////////////////////////
        // Set the target reference index to 0, may be changed later //
        ///////////////////////////////////////////////////////////////
        iCurrRefPOC = slice.getRefPic(eCurrRefPicList, 0)->getPOC();
        // Scale the vector.
        cColMv = mi.mv[eColRefPicList];
        //pcMvFieldSP[2*iPartition + eCurrRefPicList].getMv();
        // Assume always short-term for now
        iScale = xGetDistScaleFactor(iCurrPOC, iCurrRefPOC, iColPOC, iColRefPOC);
    
        if (iScale != 4096)
        {
    
    #if !REMOVE_MV_ADAPT_PREC
    
          if (slice.getSPS()->getSpsNext().getUseHighPrecMv())
          {
            cColMv.setHighPrec();
          }
    
    
          cColMv = cColMv.scaleMv(iScale);
        }
    
        return true;
      }
      return false;
    }
    
    void clipColBlkMv(int& mvX, int& mvY, const PredictionUnit& pu)
    {
      Position puPos = pu.lumaPos();
      Size     puSize = pu.lumaSize();
    
      int ctuSize = pu.cs->sps->getSpsNext().getCTUSize();
      int ctuX = puPos.x / ctuSize*ctuSize;
      int ctuY = puPos.y / ctuSize*ctuSize;
    
      int horMax = std::min((int)pu.cs->sps->getPicWidthInLumaSamples(), ctuX + ctuSize + 4) - puSize.width;
      int horMin = std::max((int)0, ctuX);
      int verMax = std::min((int)pu.cs->sps->getPicHeightInLumaSamples(), ctuY + ctuSize) - puSize.height;
      int verMin = std::min((int)0, ctuY);
    
      horMax = horMax - puPos.x;
      horMin = horMin - puPos.x;
      verMax = verMax - puPos.y;
      verMin = verMin - puPos.y;
    
      mvX = std::min(horMax, std::max(horMin, mvX));
      mvY = std::min(verMax, std::max(verMin, mvY));
    }
    
    
    bool PU::getInterMergeSubPuMvpCand(const PredictionUnit &pu, MergeCtx& mrgCtx, bool& LICFlag, const int count
    )
    
    {
      const Slice   &slice = *pu.cs->slice;
      const unsigned scale = 4 * std::max<int>(1, 4 * AMVP_DECIMATION_FACTOR / 4);
      const unsigned mask = ~(scale - 1);
    
      const Picture *pColPic = slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx());
      Mv cTMv;
      RefPicList fetchRefPicList = RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0);
    
      bool terminate = false;
      for (unsigned currRefListId = 0; currRefListId < (slice.getSliceType() == B_SLICE ? 2 : 1) && !terminate; currRefListId++)
      {
        for (int uiN = 0; uiN < count && !terminate; uiN++)
        {
          RefPicList currRefPicList = RefPicList(slice.getCheckLDC() ? (slice.getColFromL0Flag() ? currRefListId : 1 - currRefListId) : currRefListId);
    
          if ((mrgCtx.interDirNeighbours[uiN] & (1 << currRefPicList)) && slice.getRefPic(currRefPicList, mrgCtx.mvFieldNeighbours[uiN * 2 + currRefPicList].refIdx) == pColPic)
          {
            cTMv = mrgCtx.mvFieldNeighbours[uiN * 2 + currRefPicList].mv;
            terminate = true;
            fetchRefPicList = currRefPicList;
            break;
          }
        }
      }
    
      ///////////////////////////////////////////////////////////////////////
      ////////          GET Initial Temporal Vector                  ////////
      ///////////////////////////////////////////////////////////////////////
      int mvPrec = 2;
    
    #if !REMOVE_MV_ADAPT_PREC
    
      if (pu.cs->sps->getSpsNext().getUseHighPrecMv())
      {
        cTMv.setHighPrec();
    
        mvPrec += VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
    
    #if !REMOVE_MV_ADAPT_PREC
    
      int mvRndOffs = (1 << mvPrec) >> 1;
    
      Mv cTempVector = cTMv;
      bool  tempLICFlag = false;
    
      // compute the location of the current PU
      Position puPos = pu.lumaPos();
      Size puSize = pu.lumaSize();
      int numPartLine = std::max(puSize.width >> slice.getSubPuMvpSubblkLog2Size(), 1u);
      int numPartCol = std::max(puSize.height >> slice.getSubPuMvpSubblkLog2Size(), 1u);
      int puHeight = numPartCol == 1 ? puSize.height : 1 << slice.getSubPuMvpSubblkLog2Size();
      int puWidth = numPartLine == 1 ? puSize.width : 1 << slice.getSubPuMvpSubblkLog2Size();
    
      Mv cColMv;
      // use coldir.
      bool     bBSlice = slice.isInterB();
    
      Position centerPos;
    
      bool found = false;
      cTempVector = cTMv;
      int tempX = ((cTempVector.getHor() + mvRndOffs) >> mvPrec);
      int tempY = ((cTempVector.getVer() + mvRndOffs) >> mvPrec);
      clipColBlkMv(tempX, tempY, pu);
    
      if (puSize.width == puWidth && puSize.height == puHeight)
      {
        centerPos.x = puPos.x + (puSize.width >> 1) + tempX;
        centerPos.y = puPos.y + (puSize.height >> 1) + tempY;
      }
      else
      {
        centerPos.x = puPos.x + ((puSize.width / puWidth) >> 1)   * puWidth + (puWidth >> 1) + tempX;
        centerPos.y = puPos.y + ((puSize.height / puHeight) >> 1) * puHeight + (puHeight >> 1) + tempY;
      }
    
      centerPos.x = Clip3(0, (int)pColPic->lwidth() - 1, centerPos.x);
      centerPos.y = Clip3(0, (int)pColPic->lheight() - 1, centerPos.y);
    
      centerPos = Position{ PosType(centerPos.x & mask), PosType(centerPos.y & mask) };
    
      // derivation of center motion parameters from the collocated CU
      const MotionInfo &mi = pColPic->cs->getMotionInfo(centerPos);
    
      if (mi.isInter)
      {
        for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++)
        {
          RefPicList  currRefPicList = RefPicList(currRefListId);
    
          if (deriveScaledMotionTemporal(slice, centerPos, pColPic, currRefPicList, cColMv, fetchRefPicList))
          {
            // set as default, for further motion vector field spanning
            mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(cColMv, 0);
            mrgCtx.interDirNeighbours[count] |= (1 << currRefListId);
            LICFlag = tempLICFlag;
            found = true;
          }
          else
          {
            mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(Mv(), NOT_VALID);
            mrgCtx.interDirNeighbours[count] &= ~(1 << currRefListId);
          }
        }
      }
    
      if (!found)
      {
        return false;
      }
      
      int xOff = puWidth / 2;
      int yOff = puHeight / 2;
    
      // compute the location of the current PU
      xOff += tempX;
      yOff += tempY;
    
      int iPicWidth = pColPic->lwidth() - 1;
      int iPicHeight = pColPic->lheight() - 1;
    
      MotionBuf& mb = mrgCtx.subPuMvpMiBuf;
    
      const bool isBiPred = isBipredRestriction(pu);
    
      for (int y = puPos.y; y < puPos.y + puSize.height; y += puHeight)
      {
        for (int x = puPos.x; x < puPos.x + puSize.width; x += puWidth)
        {
          Position colPos{ x + xOff, y + yOff };
    
          colPos.x = Clip3(0, iPicWidth, colPos.x);
          colPos.y = Clip3(0, iPicHeight, colPos.y);
    
          colPos = Position{ PosType(colPos.x & mask), PosType(colPos.y & mask) };
    
          const MotionInfo &colMi = pColPic->cs->getMotionInfo(colPos);
    
          MotionInfo mi;
    
          mi.isInter = true;
          mi.sliceIdx = slice.getIndependentSliceIdx();
    
          if (colMi.isInter)
          {
            for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++)
            {
              RefPicList currRefPicList = RefPicList(currRefListId);
              if (deriveScaledMotionTemporal(slice, colPos, pColPic, currRefPicList, cColMv, fetchRefPicList))
              {
                mi.refIdx[currRefListId] = 0;
                mi.mv[currRefListId] = cColMv;
              }
            }
            }
          else
          {
            // intra coded, in this case, no motion vector is available for list 0 or list 1, so use default
            mi.mv[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].mv;
            mi.mv[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].mv;
            mi.refIdx[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].refIdx;
            mi.refIdx[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].refIdx;
          }
    
          mi.interDir = (mi.refIdx[0] != -1 ? 1 : 0) + (mi.refIdx[1] != -1 ? 2 : 0);
    
          if (isBiPred && mi.interDir == 3)
          {
            mi.interDir = 1;
            mi.mv[1] = Mv();
            mi.refIdx[1] = NOT_VALID;
          }
    
          mb.subBuf(g_miScaling.scale(Position{ x, y } -pu.lumaPos()), g_miScaling.scale(Size(puWidth, puHeight))).fill(mi);
          }
        }
    
      return true;
      }
    
    void PU::spanMotionInfo( PredictionUnit &pu, const MergeCtx &mrgCtx )
    {
      MotionBuf mb = pu.getMotionBuf();
    
      if( !pu.mergeFlag || pu.mergeType == MRG_TYPE_DEFAULT_N )
      {
        MotionInfo mi;
    
        mi.isInter  = CU::isInter( *pu.cu );
        mi.sliceIdx = pu.cu->slice->getIndependentSliceIdx();
    
        if( mi.isInter )
        {
          mi.interDir = pu.interDir;
    
          for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ )
          {
            mi.mv[i]     = pu.mv[i];
            mi.refIdx[i] = pu.refIdx[i];
          }
        }
    
        if( pu.cu->affine )
        {
          for( int y = 0; y < mb.height; y++ )
          {
            for( int x = 0; x < mb.width; x++ )
            {
              MotionInfo &dest = mb.at( x, y );
              dest.isInter  = mi.isInter;
              dest.interDir = mi.interDir;
              dest.sliceIdx = mi.sliceIdx;
              for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ )
              {
                if( mi.refIdx[i] == -1 )
                {
                  dest.mv[i] = Mv();
                }
                dest.refIdx[i] = mi.refIdx[i];
              }
            }
          }
        }
        else
        {
          mb.fill( mi );
        }
      }
      else if (pu.mergeType == MRG_TYPE_SUBPU_ATMVP)
      {
        CHECK(mrgCtx.subPuMvpMiBuf.area() == 0 || !mrgCtx.subPuMvpMiBuf.buf, "Buffer not initialized");
        mb.copyFrom(mrgCtx.subPuMvpMiBuf);
      }
      else
      {
    
        if( isBipredRestriction( pu ) )
        {
          for( int y = 0; y < mb.height; y++ )
          {
            for( int x = 0; x < mb.width; x++ )
            {
              MotionInfo &mi = mb.at( x, y );
              if( mi.interDir == 3 )
              {
                mi.interDir  = 1;
                mi.mv    [1] = Mv();
                mi.refIdx[1] = NOT_VALID;
              }
            }
          }
        }
      }
    }
    
    void PU::applyImv( PredictionUnit& pu, MergeCtx &mrgCtx, InterPrediction *interPred )
    {
      if( !pu.mergeFlag )
      {
        unsigned imvShift = pu.cu->imv << 1;
        if( pu.interDir != 2 /* PRED_L1 */ )
        {
          if (pu.cu->imv)
          {
    
    #if !REMOVE_MV_ADAPT_PREC
            CHECK(pu.mvd[0].highPrec, "Motion vector difference should never be high precision");
    #endif
    
            pu.mvd[0] = Mv( pu.mvd[0].hor << imvShift, pu.mvd[0].ver << imvShift );
          }
          unsigned mvp_idx = pu.mvpIdx[0];
          AMVPInfo amvpInfo;
          PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo);
          pu.mvpNum[0] = amvpInfo.numCand;
          pu.mvpIdx[0] = mvp_idx;
          pu.mv    [0] = amvpInfo.mvCand[mvp_idx] + pu.mvd[0];
    
    #if REMOVE_MV_ADAPT_PREC
          pu.mv[0].hor = pu.mv[0].hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
          pu.mv[0].ver = pu.mv[0].ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
    #endif
    
        }
    
        if (pu.interDir != 1 /* PRED_L0 */)
        {
          if( !( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 ) && pu.cu->imv )/* PRED_BI */
          {
    
    #if !REMOVE_MV_ADAPT_PREC
            CHECK(pu.mvd[1].highPrec, "Motion vector difference should never be high precision");
    #endif
    
            pu.mvd[1] = Mv( pu.mvd[1].hor << imvShift, pu.mvd[1].ver << imvShift );
          }
          unsigned mvp_idx = pu.mvpIdx[1];
          AMVPInfo amvpInfo;
          PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo);
          pu.mvpNum[1] = amvpInfo.numCand;
          pu.mvpIdx[1] = mvp_idx;
          pu.mv    [1] = amvpInfo.mvCand[mvp_idx] + pu.mvd[1];
    
    #if REMOVE_MV_ADAPT_PREC
          pu.mv[1].hor = pu.mv[1].hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
          pu.mv[1].ver = pu.mv[1].ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;
    #endif
    
    2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
        }
      }
      else
      {
        // this function is never called for merge
        THROW("unexpected");
        PU::getInterMergeCandidates ( pu, mrgCtx );
        PU::restrictBiPredMergeCands( pu, mrgCtx );
    
        mrgCtx.setMergeInfo( pu, pu.mergeIdx );
      }
    
      PU::spanMotionInfo( pu, mrgCtx );
    }
    
    bool PU::isBiPredFromDifferentDir( const PredictionUnit& pu )
    {
      if ( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
      {
        const int iPOC0 = pu.cu->slice->getRefPOC( REF_PIC_LIST_0, pu.refIdx[0] );
        const int iPOC1 = pu.cu->slice->getRefPOC( REF_PIC_LIST_1, pu.refIdx[1] );
        const int iPOC  = pu.cu->slice->getPOC();
        if ( (iPOC - iPOC0)*(iPOC - iPOC1) < 0 )
        {
          return true;
        }
      }
    
      return false;
    }
    
    void PU::restrictBiPredMergeCands( const PredictionUnit &pu, MergeCtx& mergeCtx )
    {
      if( PU::isBipredRestriction( pu ) )
      {
        for( uint32_t mergeCand = 0; mergeCand < mergeCtx.numValidMergeCand; ++mergeCand )
        {
          if( mergeCtx.interDirNeighbours[ mergeCand ] == 3 )
          {
            mergeCtx.interDirNeighbours[ mergeCand ] = 1;
            mergeCtx.mvFieldNeighbours[( mergeCand << 1 ) + 1].setMvField( Mv( 0, 0 ), -1 );
          }
        }
      }
    }
    
    void CU::resetMVDandMV2Int( CodingUnit& cu, InterPrediction *interPred )
    {
      for( auto &pu : CU::traversePUs( cu ) )
      {
        MergeCtx mrgCtx;
    
        if( !pu.mergeFlag )
        {
          unsigned imvShift = cu.imv << 1;
          if( pu.interDir != 2 /* PRED_L1 */ )
          {
            Mv mv        = pu.mv[0];
            Mv mvPred;
            AMVPInfo amvpInfo;
            PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo);
            pu.mvpNum[0] = amvpInfo.numCand;
    
            mvPred       = amvpInfo.mvCand[pu.mvpIdx[0]];
            roundMV      ( mv, imvShift );
            pu.mv[0]     = mv;
            Mv mvDiff    = mv - mvPred;
            pu.mvd[0]    = mvDiff;
          }
          if( pu.interDir != 1 /* PRED_L0 */ )
          {
            Mv mv        = pu.mv[1];
            Mv mvPred;
            AMVPInfo amvpInfo;
            PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo);
            pu.mvpNum[1] = amvpInfo.numCand;
    
            mvPred       = amvpInfo.mvCand[pu.mvpIdx[1]];
            roundMV      ( mv, imvShift );
            Mv mvDiff    = mv - mvPred;
    
            if( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 /* PRED_BI */ )
            {
              pu.mvd[1] = Mv();
              mv = mvPred;
            }
            else
            {
              pu.mvd[1] = mvDiff;
            }
            pu.mv[1] = mv;
          }
    
        }
        else
        {
            PU::getInterMergeCandidates ( pu, mrgCtx );
            PU::restrictBiPredMergeCands( pu, mrgCtx );
    
            mrgCtx.setMergeInfo( pu, pu.mergeIdx );
        }
    
        PU::spanMotionInfo( pu, mrgCtx );
      }
    }
    
    bool CU::hasSubCUNonZeroMVd( const CodingUnit& cu )
    {
      bool bNonZeroMvd = false;
    
      for( const auto &pu : CU::traversePUs( cu ) )
      {
        if( ( !pu.mergeFlag ) && ( !cu.skip ) )
        {
          if( pu.interDir != 2 /* PRED_L1 */ )
          {
            bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getHor() != 0;
            bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getVer() != 0;
          }
          if( pu.interDir != 1 /* PRED_L0 */ )
          {
            if( !pu.cu->cs->slice->getMvdL1ZeroFlag() || pu.interDir != 3 /* PRED_BI */ )
            {
              bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getHor() != 0;
              bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getVer() != 0;
            }
          }
        }
      }
    
      return bNonZeroMvd;
    }
    
    int CU::getMaxNeighboriMVCandNum( const CodingStructure& cs, const Position& pos )
    {
      const int  numDefault     = 0;
      int        maxImvNumCand  = 0;
    
      // Get BCBP of left PU
    #if HEVC_TILES_WPP
      const CodingUnit *cuLeft  = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
    #else
      const CodingUnit *cuLeft  = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), CH_L );
    #endif
      maxImvNumCand = ( cuLeft ) ? cuLeft->imvNumCand : numDefault;
    
      // Get BCBP of above PU
    #if HEVC_TILES_WPP
      const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
    #else
      const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), CH_L );
    #endif
      maxImvNumCand = std::max( maxImvNumCand, ( cuAbove ) ? cuAbove->imvNumCand : numDefault );
    
      return maxImvNumCand;
    }
    
    
    
    
    
    // TU tools
    
    #if HEVC_USE_4x4_DSTVII
    bool TU::useDST(const TransformUnit &tu, const ComponentID &compID)
    {
      return isLuma(compID) && tu.cu->predMode == MODE_INTRA;
    }
    
    #endif
    
    bool TU::isNonTransformedResidualRotated(const TransformUnit &tu, const ComponentID &compID)
    {
      return tu.cs->sps->getSpsRangeExtension().getTransformSkipRotationEnabledFlag() && tu.blocks[compID].width == 4 && tu.cu->predMode == MODE_INTRA;
    }
    
    bool TU::getCbf( const TransformUnit &tu, const ComponentID &compID )
    {
    #if ENABLE_BMS
      return getCbfAtDepth( tu, compID, tu.depth );
    #else
      return tu.cbf[compID];
    #endif
    }
    
    #if ENABLE_BMS
    bool TU::getCbfAtDepth(const TransformUnit &tu, const ComponentID &compID, const unsigned &depth)
    {
      return ((tu.cbf[compID] >> depth) & 1) == 1;
    }
    
    void TU::setCbfAtDepth(TransformUnit &tu, const ComponentID &compID, const unsigned &depth, const bool &cbf)
    {
      // first clear the CBF at the depth
      tu.cbf[compID] &= ~(1  << depth);
      // then set the CBF
      tu.cbf[compID] |= ((cbf ? 1 : 0) << depth);
    }
    #else
    void TU::setCbf( TransformUnit &tu, const ComponentID &compID, const bool &cbf )
    {
      tu.cbf[compID] = cbf;
    }
    #endif
    
    bool TU::hasTransformSkipFlag(const CodingStructure& cs, const CompArea& area)
    {
      uint32_t transformSkipLog2MaxSize = cs.pps->getPpsRangeExtension().getLog2MaxTransformSkipBlockSize();
    
      if( cs.pcv->rectCUs )
      {
        return ( area.width * area.height <= (1 << ( transformSkipLog2MaxSize << 1 )) );
      }
      return ( area.width <= (1 << transformSkipLog2MaxSize) );
    }
    
    uint32_t TU::getGolombRiceStatisticsIndex(const TransformUnit &tu, const ComponentID &compID)
    {
      const bool transformSkip    = tu.transformSkip[compID];
      const bool transquantBypass = tu.cu->transQuantBypass;
    
      //--------
    
      const uint32_t channelTypeOffset = isChroma(compID) ? 2 : 0;
      const uint32_t nonTransformedOffset = (transformSkip || transquantBypass) ? 1 : 0;
    
      //--------
    
      const uint32_t selectedIndex = channelTypeOffset + nonTransformedOffset;
      CHECK( selectedIndex >= RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS, "Invalid golomb rice adaptation statistics set" );
    
      return selectedIndex;
    }
    
    #if HEVC_USE_MDCS
    uint32_t TU::getCoefScanIdx(const TransformUnit &tu, const ComponentID &compID)
    {
      //------------------------------------------------
    
      //this mechanism is available for intra only
    
      if( !CU::isIntra( *tu.cu ) )
      {
        return SCAN_DIAG;
      }
    
      //------------------------------------------------
    
      //check that MDCS can be used for this TU
    
    
      const CompArea &area      = tu.blocks[compID];
      const SPS &sps            = *tu.cs->sps;
      const ChromaFormat format = sps.getChromaFormatIdc();
    
    
      const uint32_t maximumWidth  = MDCS_MAXIMUM_WIDTH  >> getComponentScaleX(compID, format);
      const uint32_t maximumHeight = MDCS_MAXIMUM_HEIGHT >> getComponentScaleY(compID, format);
    
      if ((area.width > maximumWidth) || (area.height > maximumHeight))
      {
        return SCAN_DIAG;
      }
    
      //------------------------------------------------
    
      //otherwise, select the appropriate mode
    
      const PredictionUnit &pu = *tu.cs->getPU( area.pos(), toChannelType( compID ) );
    
      uint32_t uiDirMode = PU::getFinalIntraMode(pu, toChannelType(compID));
    
      //------------------
    
           if (abs((int) uiDirMode - VER_IDX) <= MDCS_ANGLE_LIMIT)
      {
        return SCAN_HOR;
      }
      else if (abs((int) uiDirMode - HOR_IDX) <= MDCS_ANGLE_LIMIT)
      {
        return SCAN_VER;
      }
      else
      {
        return SCAN_DIAG;
      }
    }
    
    #endif
    bool TU::hasCrossCompPredInfo( const TransformUnit &tu, const ComponentID &compID )
    {
      return ( isChroma(compID) && tu.cs->pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf( tu, COMPONENT_Y ) &&
             ( CU::isInter(*tu.cu) || PU::isChromaIntraModeCrossCheckMode( *tu.cs->getPU( tu.blocks[compID].pos(), toChannelType( compID ) ) ) ) );
    }
    
    uint32_t TU::getNumNonZeroCoeffsNonTS( const TransformUnit& tu, const bool bLuma, const bool bChroma )
    {
      uint32_t count = 0;
      for( uint32_t i = 0; i < ::getNumberValidTBlocks( *tu.cs->pcv ); i++ )
      {
        if( tu.blocks[i].valid() && !tu.transformSkip[i] && TU::getCbf( tu, ComponentID( i ) ) )
        {
          if( isLuma  ( tu.blocks[i].compID ) && !bLuma   ) continue;
          if( isChroma( tu.blocks[i].compID ) && !bChroma ) continue;
    
          uint32_t area = tu.blocks[i].area();
          const TCoeff* coeff = tu.getCoeffs( ComponentID( i ) ).buf;
          for( uint32_t j = 0; j < area; j++ )
          {
            count += coeff[j] != 0;
          }
        }
      }
      return count;
    }
    
    bool TU::needsSqrt2Scale( const Size& size )
    {
      return (((g_aucLog2[size.width] + g_aucLog2[size.height]) & 1) == 1);
    }
    
    #if HM_QTBT_AS_IN_JEM_QUANT
    
    bool TU::needsBlockSizeTrafoScale( const Size& size )
    {
      return needsSqrt2Scale( size ) || isNonLog2BlockSize( size );
    }
    #else
    bool TU::needsQP3Offset(const TransformUnit &tu, const ComponentID &compID)
    {
      if( tu.cs->pcv->rectCUs && !tu.transformSkip[compID] )
      {
        return ( ( ( g_aucLog2[tu.blocks[compID].width] + g_aucLog2[tu.blocks[compID].height] ) & 1 ) == 1 );
      }
      return false;
    }
    #endif
    
    
    
    
    
    // other tools
    
    uint32_t getCtuAddr( const Position& pos, const PreCalcValues& pcv )
    {
      return ( pos.x >> pcv.maxCUWidthLog2 ) + ( pos.y >> pcv.maxCUHeightLog2 ) * pcv.widthInCtus;
    }