Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file UnitTool.cpp
* \brief defines operations for basic units
*/
#include "UnitTools.h"
#include "dtrace_next.h"
#include "Unit.h"
#include "Slice.h"
#include "Picture.h"
#include <utility>
#include <algorithm>
// CS tools
uint64_t CS::getEstBits(const CodingStructure &cs)
{
return cs.fracBits >> SCALE_BITS;
}
bool CS::isDualITree( const CodingStructure &cs )
{
return cs.slice->isIRAP() && !cs.pcv->ISingleTree;

Karsten Suehring
committed
}
UnitArea CS::getArea( const CodingStructure &cs, const UnitArea &area, const ChannelType chType )
{
return isDualITree( cs ) ? area.singleChan( chType ) : area;
}
// CU tools
bool CU::isIntra(const CodingUnit &cu)
{
return cu.predMode == MODE_INTRA;
}
bool CU::isInter(const CodingUnit &cu)
{
return cu.predMode == MODE_INTER;
}
bool CU::isIBC(const CodingUnit &cu)
{
return cu.predMode == MODE_IBC;
}
#endif

Karsten Suehring
committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
bool CU::isRDPCMEnabled(const CodingUnit& cu)
{
return cu.cs->sps->getSpsRangeExtension().getRdpcmEnabledFlag(cu.predMode == MODE_INTRA ? RDPCM_SIGNAL_IMPLICIT : RDPCM_SIGNAL_EXPLICIT);
}
bool CU::isLosslessCoded(const CodingUnit &cu)
{
return cu.cs->pps->getTransquantBypassEnabledFlag() && cu.transQuantBypass;
}
bool CU::isSameSlice(const CodingUnit& cu, const CodingUnit& cu2)
{
return cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx();
}
#if HEVC_TILES_WPP
bool CU::isSameTile(const CodingUnit& cu, const CodingUnit& cu2)
{
return cu.tileIdx == cu2.tileIdx;
}
bool CU::isSameSliceAndTile(const CodingUnit& cu, const CodingUnit& cu2)
{
return ( cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx() ) && ( cu.tileIdx == cu2.tileIdx );
}
#endif
bool CU::isSameCtu(const CodingUnit& cu, const CodingUnit& cu2)
{
uint32_t ctuSizeBit = g_aucLog2[cu.cs->sps->getMaxCUWidth()];
Position pos1Ctu(cu.lumaPos().x >> ctuSizeBit, cu.lumaPos().y >> ctuSizeBit);
Position pos2Ctu(cu2.lumaPos().x >> ctuSizeBit, cu2.lumaPos().y >> ctuSizeBit);
return pos1Ctu.x == pos2Ctu.x && pos1Ctu.y == pos2Ctu.y;
}
uint32_t CU::getIntraSizeIdx(const CodingUnit &cu)
{
uint8_t uiWidth = cu.lumaSize().width;
uint32_t uiCnt = 0;
while (uiWidth)
{
uiCnt++;
uiWidth >>= 1;
}
uiCnt -= 2;
return uiCnt > 6 ? 6 : uiCnt;
}
bool CU::isLastSubCUOfCtu( const CodingUnit &cu )
{
const SPS &sps = *cu.cs->sps;
const Area cuAreaY = CS::isDualITree( *cu.cs ) ? Area( recalcPosition( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].pos() ), recalcSize( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].size() ) ) : ( const Area& ) cu.Y();
return ( ( ( ( cuAreaY.x + cuAreaY.width ) & cu.cs->pcv->maxCUWidthMask ) == 0 || cuAreaY.x + cuAreaY.width == sps.getPicWidthInLumaSamples() ) &&
( ( ( cuAreaY.y + cuAreaY.height ) & cu.cs->pcv->maxCUHeightMask ) == 0 || cuAreaY.y + cuAreaY.height == sps.getPicHeightInLumaSamples() ) );
}
uint32_t CU::getCtuAddr( const CodingUnit &cu )
{
return getCtuAddr( cu.blocks[cu.chType].lumaPos(), *cu.cs->pcv );
}
int CU::predictQP( const CodingUnit& cu, const int prevQP )
{
const CodingStructure &cs = *cu.cs;
#if ENABLE_WPP_PARALLELISM
if( cs.sps->getSpsNext().getUseNextDQP() )
{
// Inter-CTU 2D "planar" c(orner) a(bove)
// predictor arrangement: b(efore) p(rediction)
// restrict the lookup, as it might cross CTU/slice/tile boundaries
const CodingUnit *cuA = cs.getCURestricted( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu, cu.chType );
const CodingUnit *cuB = cs.getCURestricted( cu.blocks[cu.chType].pos().offset( -1, 0 ), cu, cu.chType );
const CodingUnit *cuC = cs.getCURestricted( cu.blocks[cu.chType].pos().offset( -1, -1 ), cu, cu.chType );
const int a = cuA ? cuA->qp : cs.slice->getSliceQpBase();
const int b = cuB ? cuB->qp : cs.slice->getSliceQpBase();
const int c = cuC ? cuC->qp : cs.slice->getSliceQpBase();
return Clip3( ( a < b ? a : b ), ( a > b ? a : b ), a + b - c ); // derived from Martucci's Median Adaptive Prediction, 1990
}
#endif
// only predict within the same CTU, use HEVC's above+left prediction
const int a = ( cu.blocks[cu.chType].y & ( cs.pcv->maxCUHeightMask >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType ) )->qp : prevQP;
const int b = ( cu.blocks[cu.chType].x & ( cs.pcv->maxCUWidthMask >> getChannelTypeScaleX( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU( cu.blocks[cu.chType].pos().offset( -1, 0 ), cu.chType ) )->qp : prevQP;
return ( a + b + 1 ) >> 1;
}
bool CU::isQGStart( const CodingUnit& cu, Partitioner& partitioner )

Karsten Suehring
committed
{
int maxDqpDepth = cu.slice->getPPS()->getMaxCuDQPDepth();
if( partitioner.currDepth >= maxDqpDepth )
{
PartLevel splitAtMaxDepth = partitioner.getPartStack().at( maxDqpDepth );
// the parent node of qtDepth + mttDepth == maxDqpDepth
if( splitAtMaxDepth.parts[splitAtMaxDepth.idx].blocks[partitioner.chType].pos() == cu.blocks[partitioner.chType].pos() )
return true;
else
return false;
}
else
return true;

Karsten Suehring
committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
}
uint32_t CU::getNumPUs( const CodingUnit& cu )
{
uint32_t cnt = 0;
PredictionUnit *pu = cu.firstPU;
do
{
cnt++;
} while( ( pu != cu.lastPU ) && ( pu = pu->next ) );
return cnt;
}
void CU::addPUs( CodingUnit& cu )
{
cu.cs->addPU( CS::getArea( *cu.cs, cu, cu.chType ), cu.chType );
}
PartSplit CU::getSplitAtDepth( const CodingUnit& cu, const unsigned depth )
{
if( depth >= cu.depth ) return CU_DONT_SPLIT;
const PartSplit cuSplitType = PartSplit( ( cu.splitSeries >> ( depth * SPLIT_DMULT ) ) & SPLIT_MASK );
if ( cuSplitType == CU_QUAD_SPLIT ) return CU_QUAD_SPLIT;
else if( cuSplitType == CU_HORZ_SPLIT ) return CU_HORZ_SPLIT;
else if( cuSplitType == CU_VERT_SPLIT ) return CU_VERT_SPLIT;
else if( cuSplitType == CU_TRIH_SPLIT ) return CU_TRIH_SPLIT;
else if( cuSplitType == CU_TRIV_SPLIT ) return CU_TRIV_SPLIT;
else { THROW( "Unknown split mode" ); return CU_QUAD_SPLIT; }
}
bool CU::hasNonTsCodedBlock( const CodingUnit& cu )
{
bool hasAnyNonTSCoded = false;
for( auto &currTU : traverseTUs( cu ) )
{
for( uint32_t i = 0; i < ::getNumberValidTBlocks( *cu.cs->pcv ); i++ )
{
#if JVET_M0464_UNI_MTS
hasAnyNonTSCoded |= ( currTU.blocks[i].valid() && ( isLuma(ComponentID(i)) ? currTU.mtsIdx != 1 : true ) && TU::getCbf( currTU, ComponentID( i ) ) );
#else

Karsten Suehring
committed
hasAnyNonTSCoded |= ( currTU.blocks[i].valid() && !currTU.transformSkip[i] && TU::getCbf( currTU, ComponentID( i ) ) );

Karsten Suehring
committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
}
}
return hasAnyNonTSCoded;
}
uint32_t CU::getNumNonZeroCoeffNonTs( const CodingUnit& cu )
{
uint32_t count = 0;
for( auto &currTU : traverseTUs( cu ) )
{
count += TU::getNumNonZeroCoeffsNonTS( currTU );
}
return count;
}
PUTraverser CU::traversePUs( CodingUnit& cu )
{
return PUTraverser( cu.firstPU, cu.lastPU->next );
}
TUTraverser CU::traverseTUs( CodingUnit& cu )
{
return TUTraverser( cu.firstTU, cu.lastTU->next );
}
cPUTraverser CU::traversePUs( const CodingUnit& cu )
{
return cPUTraverser( cu.firstPU, cu.lastPU->next );
}
cTUTraverser CU::traverseTUs( const CodingUnit& cu )
{
return cTUTraverser( cu.firstTU, cu.lastTU->next );
}
// PU tools
int PU::getIntraMPMs( const PredictionUnit &pu, unsigned* mpm, const ChannelType &channelType /*= CHANNEL_TYPE_LUMA*/ )
{
const int numMPMs = NUM_MOST_PROBABLE_MODES;
const int extendRefLine = (channelType == CHANNEL_TYPE_LUMA) ? pu.multiRefIdx : 0;

Karsten Suehring
committed
{
int numCand = -1;
int leftIntraDir = PLANAR_IDX, aboveIntraDir = PLANAR_IDX;
const CompArea &area = pu.block(getFirstComponentOfChannel(channelType));
const Position posRT = area.topRight();
const Position posLB = area.bottomLeft();
// Get intra direction of left PU
const PredictionUnit *puLeft = pu.cs->getPURestricted(posLB.offset(-1, 0), pu, channelType);
if (puLeft && CU::isIntra(*puLeft->cu))
{
leftIntraDir = puLeft->intraDir[channelType];
}
// Get intra direction of above PU
const PredictionUnit *puAbove = pu.cs->getPURestricted(posRT.offset(0, -1), pu, channelType);
if (puAbove && CU::isIntra(*puAbove->cu) && CU::isSameCtu(*pu.cu, *puAbove->cu))
{
aboveIntraDir = puAbove->intraDir[channelType];
}
CHECK(2 >= numMPMs, "Invalid number of most probable modes");
int modeIdx = 0;
int angularMode[2] = { 0, 0 };
angularMode[modeIdx++] = leftIntraDir;
}
if (aboveIntraDir > DC_IDX && aboveIntraDir != leftIntraDir)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
{
angularMode[modeIdx++] = aboveIntraDir;
}
if (modeIdx == 0)
{
mpm[0] = VER_IDX;
mpm[1] = HOR_IDX;
mpm[2] = 2;
mpm[3] = DIA_IDX;
mpm[4] = VDIA_IDX;
mpm[5] = 26;
}
else if (modeIdx == 1)
{
mpm[0] = angularMode[0];
mpm[1] = ((angularMode[0] + offset) % mod) + 2;
mpm[2] = ((angularMode[0] - 1) % mod) + 2;
mpm[3] = ((angularMode[0] + offset - 1) % mod) + 2;
mpm[4] = (angularMode[0] % mod) + 2;
mpm[5] = ((angularMode[0] + offset - 2) % mod) + 2;
}
else
{
mpm[0] = angularMode[0];
mpm[1] = angularMode[1];
int maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
int minCandModeIdx = 1 - maxCandModeIdx;
if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 1)
{
mpm[2] = ((angularMode[minCandModeIdx] + offset) % mod) + 2;
mpm[3] = ((angularMode[maxCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((angularMode[minCandModeIdx] + offset - 1) % mod) + 2;
mpm[5] = ( angularMode[maxCandModeIdx] % mod) + 2;
}
else if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] >= 62)
{
mpm[2] = ((angularMode[minCandModeIdx] - 1) % mod) + 2;
mpm[3] = ((angularMode[maxCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((angularMode[minCandModeIdx]) % mod) + 2;
mpm[5] = ((angularMode[maxCandModeIdx] + offset - 1) % mod) + 2;
}
else if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 2)
{
mpm[2] = ((angularMode[minCandModeIdx] - 1) % mod) + 2;
mpm[3] = ((angularMode[minCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((angularMode[maxCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((angularMode[minCandModeIdx] + offset - 1) % mod) + 2;
}
else
{
mpm[2] = ((angularMode[minCandModeIdx] + offset) % mod) + 2;
mpm[3] = ((angularMode[minCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((angularMode[maxCandModeIdx] + offset) % mod) + 2;
mpm[5] = ((angularMode[maxCandModeIdx] - 1) % mod) + 2;
}
mpm[1] = (mpm[0] == PLANAR_IDX) ? DC_IDX : PLANAR_IDX;
mpm[2] = VER_IDX;
mpm[3] = HOR_IDX;
mpm[4] = VER_IDX - 4;
mpm[5] = VER_IDX + 4;
numCand = 1;
if (leftIntraDir > DC_IDX)
mpm[0] = leftIntraDir;
mpm[1] = PLANAR_IDX;
mpm[2] = DC_IDX;
mpm[3] = ((leftIntraDir + offset) % mod) + 2;
mpm[4] = ((leftIntraDir - 1) % mod) + 2;
mpm[5] = ((leftIntraDir + offset - 1) % mod) + 2;
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
numCand = 2;
mpm[0] = leftIntraDir;
mpm[1] = aboveIntraDir;
bool maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
if ((leftIntraDir > DC_IDX) && (aboveIntraDir > DC_IDX))
{
mpm[2] = PLANAR_IDX;
mpm[3] = DC_IDX;
if ((mpm[maxCandModeIdx] - mpm[!maxCandModeIdx] < 63) && (mpm[maxCandModeIdx] - mpm[!maxCandModeIdx] > 1))
{
mpm[4] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
}
else
{
mpm[4] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx]) % mod) + 2;
}
}
else if (leftIntraDir + aboveIntraDir >= 2)
{
mpm[2] = (mpm[!maxCandModeIdx] == PLANAR_IDX) ? DC_IDX : PLANAR_IDX;
mpm[3] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;
}

Karsten Suehring
committed
for (int i = 0; i < numMPMs; i++)
{
CHECK(mpm[i] >= NUM_LUMA_MODE, "Invalid MPM");
}
CHECK(numCand == 0, "No candidates found");
return numCand;
}
}
void PU::getIntraChromaCandModes( const PredictionUnit &pu, unsigned modeList[NUM_CHROMA_MODE] )
{
{
modeList[ 0 ] = PLANAR_IDX;
modeList[ 1 ] = VER_IDX;
modeList[ 2 ] = HOR_IDX;
modeList[ 3 ] = DC_IDX;
modeList[4] = LM_CHROMA_IDX;
modeList[5] = MDLM_L_IDX;
modeList[6] = MDLM_T_IDX;
modeList[7] = DM_CHROMA_IDX;

Karsten Suehring
committed
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
const PredictionUnit *lumaPU = CS::isDualITree( *pu.cs ) ? pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : &pu;

Karsten Suehring
committed
const uint32_t lumaMode = lumaPU->intraDir[CHANNEL_TYPE_LUMA];
for( int i = 0; i < 4; i++ )
{
if( lumaMode == modeList[i] )
{
modeList[i] = VDIA_IDX;
break;
}
}
}
}
bool PU::isLMCMode(unsigned mode)
{
return (mode >= LM_CHROMA_IDX && mode <= MDLM_T_IDX);

Karsten Suehring
committed
}
bool PU::isLMCModeEnabled(const PredictionUnit &pu, unsigned mode)
{
if ( pu.cs->sps->getSpsNext().getUseLMChroma() )
{
return true;
}
return false;
}
int PU::getLMSymbolList(const PredictionUnit &pu, int *pModeList)
{
int iIdx = 0;
pModeList[ iIdx++ ] = LM_CHROMA_IDX;
pModeList[ iIdx++ ] = -1;
pModeList[iIdx++] = MDLM_L_IDX;
pModeList[iIdx++] = MDLM_T_IDX;

Karsten Suehring
committed
return iIdx;
}
bool PU::isChromaIntraModeCrossCheckMode( const PredictionUnit &pu )
{
return pu.intraDir[CHANNEL_TYPE_CHROMA] == DM_CHROMA_IDX;
}
int PU::getMHIntraMPMs(const PredictionUnit &pu, unsigned* mpm, const ChannelType &channelType /*= CHANNEL_TYPE_LUMA*/, const bool isChromaMDMS /*= false*/, const unsigned startIdx /*= 0*/)
{
const int numMPMs = 3; // Multi-hypothesis intra uses only 3 MPM
{
int numCand = -1;
uint32_t leftIntraDir = DC_IDX, aboveIntraDir = DC_IDX;
const CompArea& area = pu.block(getFirstComponentOfChannel(channelType));
const Position& pos = area.pos();
// Get intra direction of left PU
const PredictionUnit *puLeft = pu.cs->getPURestricted(pos.offset(-1, 0), pu, channelType);
if (puLeft && (CU::isIntra(*puLeft->cu) || puLeft->mhIntraFlag))
{
leftIntraDir = puLeft->intraDir[channelType];
if (isChroma(channelType) && leftIntraDir == DM_CHROMA_IDX)
{
leftIntraDir = puLeft->intraDir[0];
}
}
// Get intra direction of above PU
const PredictionUnit* puAbove = pu.cs->getPURestricted(pos.offset(0, -1), pu, channelType);
if (puAbove && (CU::isIntra(*puAbove->cu) || puAbove->mhIntraFlag) && CU::isSameCtu(*pu.cu, *puAbove->cu))
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
{
aboveIntraDir = puAbove->intraDir[channelType];
if (isChroma(channelType) && aboveIntraDir == DM_CHROMA_IDX)
{
aboveIntraDir = puAbove->intraDir[0];
}
}
CHECK(2 >= numMPMs, "Invalid number of most probable modes");
uint32_t leftIntraDir2 = leftIntraDir;
uint32_t aboveIntraDir2 = aboveIntraDir;
leftIntraDir2 = (leftIntraDir2 > DC_IDX) ? ((leftIntraDir2 <= DIA_IDX) ? HOR_IDX : VER_IDX) : leftIntraDir2;
aboveIntraDir2 = (aboveIntraDir2 > DC_IDX) ? ((aboveIntraDir2 <= DIA_IDX) ? HOR_IDX : VER_IDX) : aboveIntraDir2;
if (leftIntraDir2 == aboveIntraDir2)
{
numCand = 1;
if (leftIntraDir2 > DC_IDX) // angular modes
{
mpm[0] = leftIntraDir2;
mpm[1] = PLANAR_IDX;
mpm[2] = DC_IDX;
}
else //non-angular
{
mpm[0] = PLANAR_IDX;
mpm[1] = DC_IDX;
mpm[2] = VER_IDX;
}
}
else
{
numCand = 2;
mpm[0] = leftIntraDir2;
mpm[1] = aboveIntraDir2;
if (leftIntraDir2 && aboveIntraDir2) //both modes are non-planar
{
mpm[2] = PLANAR_IDX;
}
else
{
mpm[2] = (leftIntraDir2 + aboveIntraDir2) < 2 ? VER_IDX : DC_IDX;
}
}
int narrowCase = getNarrowShape(pu.lwidth(), pu.lheight());
if (narrowCase > 0)
{
bool isMPM[NUM_LUMA_MODE];
for (int idx = 0; idx < NUM_LUMA_MODE; idx++)
{
isMPM[idx] = false;
}
for (int idx = 0; idx < numMPMs; idx++)
{
isMPM[mpm[idx]] = true;
}
if (narrowCase == 1 && isMPM[HOR_IDX])
{
for (int idx = 0; idx < numMPMs; idx++)
{
if (mpm[idx] == HOR_IDX)
{
if (!isMPM[PLANAR_IDX])
mpm[idx] = PLANAR_IDX;
else if (!isMPM[DC_IDX])
mpm[idx] = DC_IDX;
else if (!isMPM[VER_IDX])
mpm[idx] = VER_IDX;
break;
}
}
}
if (narrowCase == 2 && isMPM[VER_IDX])
{
for (int idx = 0; idx < numMPMs; idx++)
{
if (mpm[idx] == VER_IDX)
{
if (!isMPM[PLANAR_IDX])
mpm[idx] = PLANAR_IDX;
else if (!isMPM[DC_IDX])
mpm[idx] = DC_IDX;
else if (!isMPM[HOR_IDX])
mpm[idx] = HOR_IDX;
break;
}
}
}
}
CHECK(numCand == 0, "No candidates found");
CHECK(mpm[0] == mpm[1] || mpm[0] == mpm[2] || mpm[2] == mpm[1], "redundant MPM");
return numCand;
}
}
int PU::getNarrowShape(const int width, const int height)
{
int longSide = (width > height) ? width : height;
int shortSide = (width > height) ? height : width;
if (longSide > (2 * shortSide))
{
if (longSide == width)
return 1;
else
return 2;
}
else
{
return 0;
}
}

Karsten Suehring
committed
uint32_t PU::getFinalIntraMode( const PredictionUnit &pu, const ChannelType &chType )
{
uint32_t uiIntraMode = pu.intraDir[chType];
if( uiIntraMode == DM_CHROMA_IDX && !isLuma( chType ) )
{
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
const PredictionUnit &lumaPU = CS::isDualITree( *pu.cs ) ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA );

Karsten Suehring
committed
uiIntraMode = lumaPU.intraDir[0];
}
if( pu.chromaFormat == CHROMA_422 && !isLuma( chType ) )
{
uiIntraMode = g_chroma422IntraAngleMappingTable[uiIntraMode];
}
return uiIntraMode;
}
bool PU::xCheckSimilarMotion(const int mergeCandIndex, const int prevCnt, const MergeCtx mergeCandList, bool hasPruned[MRG_MAX_NUM_CANDS])
{
for (uint32_t ui = 0; ui < prevCnt; ui++)
{
if (hasPruned[ui])
{
continue;
}
if (mergeCandList.interDirNeighbours[ui] == mergeCandList.interDirNeighbours[mergeCandIndex])
{
if (mergeCandList.interDirNeighbours[ui] == 3)
{
int offset0 = (ui * 2);
int offset1 = (mergeCandIndex * 2);
if (mergeCandList.mvFieldNeighbours[offset0].refIdx == mergeCandList.mvFieldNeighbours[offset1].refIdx &&
mergeCandList.mvFieldNeighbours[offset0 + 1].refIdx == mergeCandList.mvFieldNeighbours[offset1 + 1].refIdx &&
mergeCandList.mvFieldNeighbours[offset0].mv == mergeCandList.mvFieldNeighbours[offset1].mv &&
mergeCandList.mvFieldNeighbours[offset0 + 1].mv == mergeCandList.mvFieldNeighbours[offset1 + 1].mv
)
{
hasPruned[ui] = true;
return true;
}
}
else
{
int offset0 = (ui * 2) + mergeCandList.interDirNeighbours[ui] - 1;
int offset1 = (mergeCandIndex * 2) + mergeCandList.interDirNeighbours[ui] - 1;
if (mergeCandList.mvFieldNeighbours[offset0].refIdx == mergeCandList.mvFieldNeighbours[offset1].refIdx &&
mergeCandList.mvFieldNeighbours[offset0].mv == mergeCandList.mvFieldNeighbours[offset1].mv
)
{
hasPruned[ui] = true;
return true;
}
}
}
}

Karsten Suehring
committed
bool PU::addMergeHMVPCand(const Slice &slice, MergeCtx& mrgCtx, bool canFastExit, const int& mrgCandIdx, const uint32_t maxNumMergeCandMin1, int &cnt, const int prevCnt, bool isAvailableSubPu, unsigned subPuMvpPos
#if JVET_M0170_MRG_SHARELIST
, bool isShared
#endif
bool PU::addMergeHMVPCand(const Slice &slice, MergeCtx& mrgCtx, bool isCandInter[MRG_MAX_NUM_CANDS], bool canFastExit, const int& mrgCandIdx, const uint32_t maxNumMergeCandMin1, int &cnt, const int prevCnt, bool isAvailableSubPu, unsigned subPuMvpPos
, int mmvdList
)
MotionInfo miNeighbor;
bool hasPruned[MRG_MAX_NUM_CANDS];
memset(hasPruned, 0, MRG_MAX_NUM_CANDS * sizeof(bool));
if (isAvailableSubPu)
{
hasPruned[subPuMvpPos] = true;
}
int num_avai_candInLUT = ibc_flag ? slice.getAvailableLUTIBCMrgNum() : (isShared ? slice.getAvailableLUTBkupMrgNum() : slice.getAvailableLUTMrgNum());
int offset = ibc_flag ? MAX_NUM_HMVP_CANDS : 0;
#else
int num_avai_candInLUT = (isShared ? slice.getAvailableLUTBkupMrgNum() : slice.getAvailableLUTMrgNum());
#endif
#else
int num_avai_candInLUT = ibc_flag ? slice.getAvailableLUTIBCMrgNum() : slice.getAvailableLUTMrgNum();
int offset = ibc_flag ? MAX_NUM_HMVP_CANDS : 0;
int num_avai_candInLUT = slice.getAvailableLUTMrgNum();
for (int mrgIdx = 1; mrgIdx <= num_avai_candInLUT; mrgIdx++)
{
miNeighbor = ibc_flag ? slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx + offset)
: (isShared ? slice.getMotionInfoFromLUTBkup(num_avai_candInLUT - mrgIdx) : slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx));
#else
miNeighbor = isShared ? slice.getMotionInfoFromLUTBkup(num_avai_candInLUT - mrgIdx) : slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx);
#endif
#else
miNeighbor = slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx + offset);
miNeighbor = slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx);
mrgCtx.interDirNeighbours[cnt] = miNeighbor.interDir;
#if JVET_M0264_HMVP_WITH_GBIIDX
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? miNeighbor.GBiIdx : GBI_DEFAULT;
#endif
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miNeighbor.mv[0], miNeighbor.refIdx[0]);
if (slice.isInterB())
{
mrgCtx.mvFieldNeighbours[(cnt << 1) + 1].setMvField(miNeighbor.mv[1], miNeighbor.refIdx[1]);
}
if (!xCheckSimilarMotion(cnt, prevCnt, mrgCtx, hasPruned))
{
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
if (miNeighbor.interDir == 1 && slice.getRefPic(REF_PIC_LIST_0, miNeighbor.refIdx[0])->getPOC() == slice.getPOC())
{
#else
if (mrgCandIdx == cnt && canFastExit)
#endif
{
return true;
}
cnt ++;
if (cnt == maxNumMergeCandMin1)
{
break;
}
}
}
return false;
}
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
void PU::getIBCMergeCandidates(const PredictionUnit &pu, MergeCtx& mrgCtx, const int& mrgCandIdx)
{
const CodingStructure &cs = *pu.cs;
const Slice &slice = *pu.cs->slice;
const uint32_t maxNumMergeCand = slice.getMaxNumMergeCand();
const bool canFastExit = pu.cs->pps->getLog2ParallelMergeLevelMinus2() == 0;
for (uint32_t ui = 0; ui < maxNumMergeCand; ++ui)
{
mrgCtx.GBiIdx[ui] = GBI_DEFAULT;
mrgCtx.interDirNeighbours[ui] = 0;
mrgCtx.mrgTypeNeighbours[ui] = MRG_TYPE_IBC;
mrgCtx.mvFieldNeighbours[(ui << 1)].refIdx = NOT_VALID;
mrgCtx.mvFieldNeighbours[(ui << 1) + 1].refIdx = NOT_VALID;
}
mrgCtx.numValidMergeCand = maxNumMergeCand;
// compute the location of the current PU
int cnt = 0;
const Position posLT = pu.Y().topLeft();
const Position posRT = pu.Y().topRight();
const Position posLB = pu.Y().bottomLeft();
MotionInfo miAbove, miLeft, miAboveLeft, miAboveRight, miBelowLeft;
//left
const PredictionUnit* puLeft = cs.getPURestricted(posLB.offset(-1, 0), pu, pu.chType);
const bool isAvailableA1 = puLeft && isDiffMER(pu, *puLeft) && pu.cu != puLeft->cu && CU::isIBC(*puLeft->cu);
if (isAvailableA1)
{
miLeft = puLeft->getMotionInfo(posLB.offset(-1, 0));
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miLeft.interDir;
// get Mv from Left
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miLeft.mv[0], miLeft.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
// above
const PredictionUnit *puAbove = cs.getPURestricted(posRT.offset(0, -1), pu, pu.chType);
bool isAvailableB1 = puAbove && isDiffMER(pu, *puAbove) && pu.cu != puAbove->cu && CU::isIBC(*puAbove->cu);
if (isAvailableB1)
{
miAbove = puAbove->getMotionInfo(posRT.offset(0, -1));
if (!isAvailableA1 || (miAbove != miLeft))
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAbove.interDir;
// get Mv from Above
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miAbove.mv[0], miAbove.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
// above right
const PredictionUnit *puAboveRight = cs.getPURestricted(posRT.offset(1, -1), pu, pu.chType);
bool isAvailableB0 = puAboveRight && isDiffMER(pu, *puAboveRight) && CU::isIBC(*puAboveRight->cu);
if (isAvailableB0)
{
miAboveRight = puAboveRight->getMotionInfo(posRT.offset(1, -1));
#if HM_JEM_MERGE_CANDS
if ((!isAvailableB1 || (miAbove != miAboveRight)) && (!isAvailableA1 || (miLeft != miAboveRight)))
#else
if (!isAvailableB1 || (miAbove != miAboveRight))
#endif
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAboveRight.interDir;
// get Mv from Above-right
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miAboveRight.mv[0], miAboveRight.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
//left bottom
const PredictionUnit *puLeftBottom = cs.getPURestricted(posLB.offset(-1, 1), pu, pu.chType);
bool isAvailableA0 = puLeftBottom && isDiffMER(pu, *puLeftBottom) && CU::isIBC(*puLeftBottom->cu);
if (isAvailableA0)
{
miBelowLeft = puLeftBottom->getMotionInfo(posLB.offset(-1, 1));
#if HM_JEM_MERGE_CANDS
if ((!isAvailableA1 || (miBelowLeft != miLeft)) && (!isAvailableB1 || (miBelowLeft != miAbove)) && (!isAvailableB0 || (miBelowLeft != miAboveRight)))
#else
if (!isAvailableA1 || (miBelowLeft != miLeft))
#endif
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miBelowLeft.interDir;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miBelowLeft.mv[0], miBelowLeft.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
// above left
if (cnt < 4)
{
const PredictionUnit *puAboveLeft = cs.getPURestricted(posLT.offset(-1, -1), pu, pu.chType);
bool isAvailableB2 = puAboveLeft && isDiffMER(pu, *puAboveLeft) && CU::isIBC(*puAboveLeft->cu);
if (isAvailableB2)
{
miAboveLeft = puAboveLeft->getMotionInfo(posLT.offset(-1, -1));
#if HM_JEM_MERGE_CANDS
if ((!isAvailableA1 || (miLeft != miAboveLeft)) && (!isAvailableB1 || (miAbove != miAboveLeft)) && (!isAvailableA0 || (miBelowLeft != miAboveLeft)) && (!isAvailableB0 || (miAboveRight != miAboveLeft)))
#else
if ((!isAvailableA1 || (miLeft != miAboveLeft)) && (!isAvailableB1 || (miAbove != miAboveLeft)))
#endif
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAboveLeft.interDir;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miAboveLeft.mv[0], miAboveLeft.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
int maxNumMergeCandMin1 = maxNumMergeCand - 1;
if (cnt != maxNumMergeCandMin1)
{
bool isAvailableSubPu = false;
unsigned subPuMvpPos = 0;
#if JVET_L0090_PAIR_AVG