Skip to content
Snippets Groups Projects
CodingStructure.cpp 40.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    /* The copyright in this software is being made available under the BSD
    * License, included below. This software may be subject to other third party
    * and contributor rights, including patent rights, and no such rights are
    * granted under this license.
    *
    * Copyright (c) 2010-2018, ITU/ISO/IEC
    * All rights reserved.
    *
    * Redistribution and use in source and binary forms, with or without
    * modification, are permitted provided that the following conditions are met:
    *
    *  * Redistributions of source code must retain the above copyright notice,
    *    this list of conditions and the following disclaimer.
    *  * Redistributions in binary form must reproduce the above copyright notice,
    *    this list of conditions and the following disclaimer in the documentation
    *    and/or other materials provided with the distribution.
    *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
    *    be used to endorse or promote products derived from this software without
    *    specific prior written permission.
    *
    * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
    * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
    * THE POSSIBILITY OF SUCH DAMAGE.
    */
    
    /** \file     CodingStructure.h
     *  \brief    A class managing the coding information for a specific image part
     */
    
    #include "CodingStructure.h"
    
    #include "Unit.h"
    #include "Slice.h"
    #include "Picture.h"
    #include "UnitTools.h"
    #include "UnitPartitioner.h"
    
    
    XUCache g_globalUnitCache = XUCache();
    
    const UnitScale UnitScaleArray[NUM_CHROMA_FORMAT][MAX_NUM_COMPONENT] =
    {
      { {2,2}, {0,0}, {0,0} },  // 4:0:0
      { {2,2}, {1,1}, {1,1} },  // 4:2:0
      { {2,2}, {1,2}, {1,2} },  // 4:2:2
      { {2,2}, {2,2}, {2,2} }   // 4:4:4
    };
    
    // ---------------------------------------------------------------------------
    // coding structure method definitions
    // ---------------------------------------------------------------------------
    
    CodingStructure::CodingStructure(CUCache& cuCache, PUCache& puCache, TUCache& tuCache)
      : area      ()
      , picture   ( nullptr )
      , parent    ( nullptr )
      , m_isTuEnc ( false )
      , m_cuCache ( cuCache )
      , m_puCache ( puCache )
      , m_tuCache ( tuCache )
    {
      for( uint32_t i = 0; i < MAX_NUM_COMPONENT; i++ )
      {
        m_coeffs[ i ] = nullptr;
        m_pcmbuf[ i ] = nullptr;
    
        m_offsets[ i ] = 0;
      }
    
      for( uint32_t i = 0; i < MAX_NUM_CHANNEL_TYPE; i++ )
      {
        m_cuIdx   [ i ] = nullptr;
        m_puIdx   [ i ] = nullptr;
        m_tuIdx   [ i ] = nullptr;
        m_isDecomp[ i ] = nullptr;
      }
    
      m_motionBuf     = nullptr;
      features.resize( NUM_ENC_FEATURES );
    
    }
    
    void CodingStructure::destroy()
    {
      picture   = nullptr;
      parent    = nullptr;
    
      m_pred.destroy();
      m_resi.destroy();
      m_reco.destroy();
      m_orgr.destroy();
    
      destroyCoeffs();
    
      for( uint32_t i = 0; i < MAX_NUM_CHANNEL_TYPE; i++ )
      {
        delete[] m_isDecomp[ i ];
        m_isDecomp[ i ] = nullptr;
    
        delete[] m_cuIdx[ i ];
        m_cuIdx[ i ] = nullptr;
    
        delete[] m_puIdx[ i ];
        m_puIdx[ i ] = nullptr;
    
        delete[] m_tuIdx[ i ];
        m_tuIdx[ i ] = nullptr;
      }
    
      delete[] m_motionBuf;
      m_motionBuf = nullptr;
    
    
      m_tuCache.cache( tus );
      m_puCache.cache( pus );
      m_cuCache.cache( cus );
    }
    
    void CodingStructure::releaseIntermediateData()
    {
      clearTUs();
      clearPUs();
      clearCUs();
    }
    
    bool CodingStructure::isDecomp( const Position &pos, const ChannelType effChType )
    {
      if( area.blocks[effChType].contains( pos ) )
      {
        return m_isDecomp[effChType][rsAddr( pos, area.blocks[effChType], area.blocks[effChType].width, unitScale[effChType] )];
      }
      else if( parent )
      {
        return parent->isDecomp( pos, effChType );
      }
      else
      {
        return false;
      }
    }
    
    bool CodingStructure::isDecomp( const Position &pos, const ChannelType effChType ) const
    {
      if( area.blocks[effChType].contains( pos ) )
      {
        return m_isDecomp[effChType][rsAddr( pos, area.blocks[effChType], area.blocks[effChType].width, unitScale[effChType] )];
      }
      else if( parent )
      {
        return parent->isDecomp( pos, effChType );
      }
      else
      {
        return false;
      }
    }
    
    void CodingStructure::setDecomp(const CompArea &_area, const bool _isCoded /*= true*/)
    {
      const UnitScale& scale = unitScale[_area.compID];
    
      AreaBuf<bool> isCodedBlk( m_isDecomp[toChannelType( _area.compID )] + rsAddr( _area, area.blocks[_area.compID].pos(), area.blocks[_area.compID].width, scale ),
                                area.blocks[_area.compID].width >> scale.posx,
                                _area.width                     >> scale.posx,
                                _area.height                    >> scale.posy);
      isCodedBlk.fill( _isCoded );
    }
    
    void CodingStructure::setDecomp(const UnitArea &_area, const bool _isCoded /*= true*/)
    {
      for( uint32_t i = 0; i < _area.blocks.size(); i++ )
      {
        if( _area.blocks[i].valid() ) setDecomp( _area.blocks[i], _isCoded );
      }
    }
    
    
    
    CodingUnit* CodingStructure::getCU( const Position &pos, const ChannelType effChType )
    {
      const CompArea &_blk = area.blocks[effChType];
    
      if( !_blk.contains( pos ) )
      {
        if( parent ) return parent->getCU( pos, effChType );
        else         return nullptr;
      }
      else
      {
        const unsigned idx = m_cuIdx[effChType][rsAddr( pos, _blk.pos(), _blk.width, unitScale[effChType] )];
    
        if( idx != 0 ) return cus[ idx - 1 ];
        else           return nullptr;
      }
    }
    
    const CodingUnit* CodingStructure::getCU( const Position &pos, const ChannelType effChType ) const
    {
      const CompArea &_blk = area.blocks[effChType];
    
      if( !_blk.contains( pos ) )
      {
        if( parent ) return parent->getCU( pos, effChType );
        else         return nullptr;
      }
      else
      {
        const unsigned idx = m_cuIdx[effChType][rsAddr( pos, _blk.pos(), _blk.width, unitScale[effChType] )];
    
        if( idx != 0 ) return cus[ idx - 1 ];
        else           return nullptr;
      }
    }
    
    PredictionUnit* CodingStructure::getPU( const Position &pos, const ChannelType effChType )
    {
      const CompArea &_blk = area.blocks[effChType];
    
      if( !_blk.contains( pos ) )
      {
        if( parent ) return parent->getPU( pos, effChType );
        else         return nullptr;
      }
      else
      {
        const unsigned idx = m_puIdx[effChType][rsAddr( pos, _blk.pos(), _blk.width, unitScale[effChType] )];
    
        if( idx != 0 ) return pus[ idx - 1 ];
        else           return nullptr;
      }
    }
    
    const PredictionUnit * CodingStructure::getPU( const Position &pos, const ChannelType effChType ) const
    {
      const CompArea &_blk = area.blocks[effChType];
    
      if( !_blk.contains( pos ) )
      {
        if( parent ) return parent->getPU( pos, effChType );
        else         return nullptr;
      }
      else
      {
        const unsigned idx = m_puIdx[effChType][rsAddr( pos, _blk.pos(), _blk.width, unitScale[effChType] )];
    
        if( idx != 0 ) return pus[ idx - 1 ];
        else           return nullptr;
      }
    }
    
    TransformUnit* CodingStructure::getTU( const Position &pos, const ChannelType effChType )
    {
      const CompArea &_blk = area.blocks[effChType];
    
      if( !_blk.contains( pos ) )
      {
        if( parent ) return parent->getTU( pos, effChType );
        else         return nullptr;
      }
      else
      {
        const unsigned idx = m_tuIdx[effChType][rsAddr( pos, _blk.pos(), _blk.width, unitScale[effChType] )];
    
        if( idx != 0 )       return tus[ idx - 1 ];
        else if( m_isTuEnc ) return parent->getTU( pos, effChType );
        else                 return nullptr;
      }
    }
    
    const TransformUnit * CodingStructure::getTU( const Position &pos, const ChannelType effChType ) const
    {
      const CompArea &_blk = area.blocks[effChType];
    
      if( !_blk.contains( pos ) )
      {
        if( parent ) return parent->getTU( pos, effChType );
        else         return nullptr;
      }
      else
      {
        const unsigned idx = m_tuIdx[effChType][rsAddr( pos, _blk.pos(), _blk.width, unitScale[effChType] )];
    
        if( idx != 0 )       return tus[idx - 1];
        else if( m_isTuEnc ) return parent->getTU( pos, effChType );
        else                 return nullptr;
      }
    }
    
    CodingUnit& CodingStructure::addCU( const UnitArea &unit, const ChannelType chType )
    {
      CodingUnit *cu = m_cuCache.get();
    
      cu->UnitArea::operator=( unit );
      cu->initData();
      cu->cs        = this;
      cu->slice     = nullptr;
      cu->next      = nullptr;
      cu->firstPU   = nullptr;
      cu->lastPU    = nullptr;
      cu->firstTU   = nullptr;
      cu->lastTU    = nullptr;
      cu->chType    = chType;
    
      CodingUnit *prevCU = m_numCUs > 0 ? cus.back() : nullptr;
    
      if( prevCU )
      {
        prevCU->next = cu;
    #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    
        CHECK( prevCU->cacheId != cu->cacheId, "Inconsintent cacheId between previous and current CU" );
    #endif
      }
    
      cus.push_back( cu );
    
      uint32_t idx = ++m_numCUs;
      cu->idx  = idx;
    
      uint32_t numCh = ::getNumberValidChannels( area.chromaFormat );
    
      for( uint32_t i = 0; i < numCh; i++ )
      {
        if( !cu->blocks[i].valid() )
        {
          continue;
        }
    
        const CompArea &_selfBlk = area.blocks[i];
        const CompArea     &_blk = cu-> blocks[i];
    
        const UnitScale& scale = unitScale[_blk.compID];
        const Area scaledSelf  = scale.scale( _selfBlk );
        const Area scaledBlk   = scale.scale(     _blk );
        unsigned *idxPtr       = m_cuIdx[i] + rsAddr( scaledBlk.pos(), scaledSelf.pos(), scaledSelf.width );
        CHECK( *idxPtr, "Overwriting a pre-existing value, should be '0'!" );
        AreaBuf<uint32_t>( idxPtr, scaledSelf.width, scaledBlk.size() ).fill( idx );
      }
    
      return *cu;
    }
    
    PredictionUnit& CodingStructure::addPU( const UnitArea &unit, const ChannelType chType )
    {
      PredictionUnit *pu = m_puCache.get();
    
      pu->UnitArea::operator=( unit );
      pu->initData();
      pu->next   = nullptr;
      pu->cs     = this;
      pu->cu     = m_isTuEnc ? cus[0] : getCU( unit.blocks[chType].pos(), chType );
      pu->chType = chType;
    #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    
      CHECK( pu->cacheId != pu->cu->cacheId, "Inconsintent cacheId between the PU and assigned CU" );
      if( pcv->noRQT )
      {
        CHECK( pu->cu->firstPU != nullptr, "Without an RQT the firstPU should be null" );
      }
    #endif
    
      PredictionUnit *prevPU = m_numPUs > 0 ? pus.back() : nullptr;
    
      if( prevPU && prevPU->cu == pu->cu )
      {
        prevPU->next = pu;
    #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    
        CHECK( prevPU->cacheId != pu->cacheId, "Inconsintent cacheId between previous and current PU" );
    #endif
      }
    
      pus.push_back( pu );
    
      if( pu->cu->firstPU == nullptr )
      {
        pu->cu->firstPU = pu;
      }
      pu->cu->lastPU = pu;
    
      uint32_t idx = ++m_numPUs;
      pu->idx  = idx;
    
      uint32_t numCh = ::getNumberValidChannels( area.chromaFormat );
      for( uint32_t i = 0; i < numCh; i++ )
      {
        if( !pu->blocks[i].valid() )
        {
          continue;
        }
    
        const CompArea &_selfBlk = area.blocks[i];
        const CompArea     &_blk = pu-> blocks[i];
    
        const UnitScale& scale = unitScale[_blk.compID];
        const Area scaledSelf  = scale.scale( _selfBlk );
        const Area scaledBlk   = scale.scale(     _blk );
        unsigned *idxPtr       = m_puIdx[i] + rsAddr( scaledBlk.pos(), scaledSelf.pos(), scaledSelf.width );
        CHECK( *idxPtr, "Overwriting a pre-existing value, should be '0'!" );
        AreaBuf<uint32_t>( idxPtr, scaledSelf.width, scaledBlk.size() ).fill( idx );
      }
    
      return *pu;
    }
    
    TransformUnit& CodingStructure::addTU( const UnitArea &unit, const ChannelType chType )
    {
      TransformUnit *tu = m_tuCache.get();
    
      tu->UnitArea::operator=( unit );
      tu->initData();
      tu->next   = nullptr;
      tu->cs     = this;
      tu->cu     = m_isTuEnc ? cus[0] : getCU( unit.blocks[chType].pos(), chType );
      tu->chType = chType;
    #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    
      if( tu->cu )
        CHECK( tu->cacheId != tu->cu->cacheId, "Inconsintent cacheId between the TU and assigned CU" );
    #endif
    
    
      TransformUnit *prevTU = m_numTUs > 0 ? tus.back() : nullptr;
    
      if( prevTU && prevTU->cu == tu->cu )
      {
        prevTU->next = tu;
    #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    
        CHECK( prevTU->cacheId != tu->cacheId, "Inconsintent cacheId between previous and current TU" );
    #endif
      }
    
      tus.push_back( tu );
    
      if( tu->cu )
      {
        if( tu->cu->firstTU == nullptr )
        {
          tu->cu->firstTU = tu;
        }
        tu->cu->lastTU = tu;
      }
    
      uint32_t idx = ++m_numTUs;
      tu->idx  = idx;
    
      TCoeff *coeffs[5] = { nullptr, nullptr, nullptr, nullptr, nullptr };
      Pel    *pcmbuf[5] = { nullptr, nullptr, nullptr, nullptr, nullptr };
    
      uint32_t numCh = ::getNumberValidComponents( area.chromaFormat );
    
      for( uint32_t i = 0; i < numCh; i++ )
      {
        if( !tu->blocks[i].valid() )
        {
          continue;
        }
    
        if (i < ::getNumberValidChannels(area.chromaFormat))
        {
          const CompArea &_selfBlk = area.blocks[i];
          const CompArea     &_blk = tu-> blocks[i];
    
          {
            const UnitScale& scale = unitScale[_blk.compID];
    
            const Area scaledSelf  = scale.scale( _selfBlk );
            const Area scaledBlk   = scale.scale(     _blk );
            unsigned *idxPtr       = m_tuIdx[i] + rsAddr( scaledBlk.pos(), scaledSelf.pos(), scaledSelf.width );
            CHECK( *idxPtr, "Overwriting a pre-existing value, should be '0'!" );
            AreaBuf<uint32_t>( idxPtr, scaledSelf.width, scaledBlk.size() ).fill( idx );
          }
        }
    
        coeffs[i] = m_coeffs[i] + m_offsets[i];
        pcmbuf[i] = m_pcmbuf[i] + m_offsets[i];
    
        unsigned areaSize = tu->blocks[i].area();
        m_offsets[i] += areaSize;
      }
    
      tu->init( coeffs, pcmbuf );
    
      return *tu;
    }
    
    CUTraverser CodingStructure::traverseCUs( const UnitArea& unit, const ChannelType effChType )
    {
      CodingUnit* firstCU = getCU( isLuma( effChType ) ? unit.lumaPos() : unit.chromaPos(), effChType );
      CodingUnit* lastCU = firstCU;
    
      do { } while( lastCU && ( lastCU = lastCU->next ) && unit.contains( *lastCU ) );
    
      return CUTraverser( firstCU, lastCU );
    }
    
    PUTraverser CodingStructure::traversePUs( const UnitArea& unit, const ChannelType effChType )
    {
      PredictionUnit* firstPU = getPU( isLuma( effChType ) ? unit.lumaPos() : unit.chromaPos(), effChType );
      PredictionUnit* lastPU  = firstPU;
    
      do { } while( lastPU && ( lastPU = lastPU->next ) && unit.contains( *lastPU ) );
    
      return PUTraverser( firstPU, lastPU );
    }
    
    TUTraverser CodingStructure::traverseTUs( const UnitArea& unit, const ChannelType effChType )
    {
      TransformUnit* firstTU = getTU( isLuma( effChType ) ? unit.lumaPos() : unit.chromaPos(), effChType );
      TransformUnit* lastTU  = firstTU;
    
      do { } while( lastTU && ( lastTU = lastTU->next ) && unit.contains( *lastTU ) );
    
      return TUTraverser( firstTU, lastTU );
    }
    
    cCUTraverser CodingStructure::traverseCUs( const UnitArea& unit, const ChannelType effChType ) const
    {
      const CodingUnit* firstCU = getCU( isLuma( effChType ) ? unit.lumaPos() : unit.chromaPos(), effChType );
      const CodingUnit* lastCU  = firstCU;
    
      do { } while( lastCU && ( lastCU = lastCU->next ) && unit.contains( *lastCU ) );
    
      return cCUTraverser( firstCU, lastCU );
    }
    
    cPUTraverser CodingStructure::traversePUs( const UnitArea& unit, const ChannelType effChType ) const
    {
      const PredictionUnit* firstPU = getPU( isLuma( effChType ) ? unit.lumaPos() : unit.chromaPos(), effChType );
      const PredictionUnit* lastPU  = firstPU;
    
      do { } while( lastPU && ( lastPU = lastPU->next ) && unit.contains( *lastPU ) );
    
      return cPUTraverser( firstPU, lastPU );
    }
    
    cTUTraverser CodingStructure::traverseTUs( const UnitArea& unit, const ChannelType effChType ) const
    {
      const TransformUnit* firstTU = getTU( isLuma( effChType ) ? unit.lumaPos() : unit.chromaPos(), effChType );
      const TransformUnit* lastTU  = firstTU;
    
      do { } while( lastTU && ( lastTU = lastTU->next ) && unit.contains( *lastTU ) );
    
      return cTUTraverser( firstTU, lastTU );
    }
    
    // coding utilities
    
    void CodingStructure::allocateVectorsAtPicLevel()
    {
    
      const int  twice = ( !pcv->ISingleTree && slice->isIRAP() && pcv->chrFormat != CHROMA_400 ) ? 2 : 1;
    
      size_t allocSize = twice * unitScale[0].scale( area.blocks[0].size() ).area();
    
      cus.reserve( allocSize );
      pus.reserve( allocSize );
      tus.reserve( allocSize );
    }
    
    
    
    void CodingStructure::create(const ChromaFormat &_chromaFormat, const Area& _area, const bool isTopLayer)
    {
      createInternals( UnitArea( _chromaFormat, _area ), isTopLayer );
    
      if( isTopLayer ) return;
    
      m_reco.create( area );
      m_pred.create( area );
      m_resi.create( area );
      m_orgr.create( area );
    }
    
    void CodingStructure::create(const UnitArea& _unit, const bool isTopLayer)
    {
      createInternals( _unit, isTopLayer );
    
      if( isTopLayer ) return;
    
      m_reco.create( area );
      m_pred.create( area );
      m_resi.create( area );
      m_orgr.create( area );
    }
    
    void CodingStructure::createInternals( const UnitArea& _unit, const bool isTopLayer )
    {
      area = _unit;
    
      memcpy( unitScale, UnitScaleArray[area.chromaFormat], sizeof( unitScale ) );
    
      picture = nullptr;
      parent  = nullptr;
    
      unsigned numCh = ::getNumberValidChannels(area.chromaFormat);
    
      for (unsigned i = 0; i < numCh; i++)
      {
        unsigned _area = unitScale[i].scale( area.blocks[i].size() ).area();
    
        m_cuIdx[i]    = _area > 0 ? new unsigned[_area] : nullptr;
        m_puIdx[i]    = _area > 0 ? new unsigned[_area] : nullptr;
        m_tuIdx[i]    = _area > 0 ? new unsigned[_area] : nullptr;
        m_isDecomp[i] = _area > 0 ? new bool    [_area] : nullptr;
      }
    
      numCh = getNumberValidComponents(area.chromaFormat);
    
      for (unsigned i = 0; i < numCh; i++)
      {
        m_offsets[i] = 0;
      }
    
      if( !isTopLayer ) createCoeffs();
    
      unsigned _lumaAreaScaled = g_miScaling.scale( area.lumaSize() ).area();
      m_motionBuf       = new MotionInfo[_lumaAreaScaled];
      initStructData();
    }
    
    void CodingStructure::rebindPicBufs()
    {
      CHECK( parent, "rebindPicBufs can only be used for the top level CodingStructure" );
    
      if( !picture->M_BUFS( 0, PIC_RECONSTRUCTION ).bufs.empty() ) m_reco.createFromBuf( picture->M_BUFS( 0, PIC_RECONSTRUCTION ) );
      else                                                         m_reco.destroy();
      if( !picture->M_BUFS( 0, PIC_PREDICTION     ).bufs.empty() ) m_pred.createFromBuf( picture->M_BUFS( 0, PIC_PREDICTION ) );
      else                                                         m_pred.destroy();
      if( !picture->M_BUFS( 0, PIC_RESIDUAL       ).bufs.empty() ) m_resi.createFromBuf( picture->M_BUFS( 0, PIC_RESIDUAL ) );
      else                                                         m_resi.destroy();
      if( pcv->isEncoder )
      {
        if( !picture->M_BUFS( 0, PIC_RESIDUAL     ).bufs.empty() ) m_orgr.create( area.chromaFormat, area.blocks[0], pcv->maxCUWidth );
        else                                                       m_orgr.destroy();
      }
    }
    
    void CodingStructure::createCoeffs()
    {
      const unsigned numCh = getNumberValidComponents( area.chromaFormat );
    
      for( unsigned i = 0; i < numCh; i++ )
      {
        unsigned _area = area.blocks[i].area();
    
        m_coeffs[i] = _area > 0 ? ( TCoeff* ) xMalloc( TCoeff, _area ) : nullptr;
        m_pcmbuf[i] = _area > 0 ? ( Pel*    ) xMalloc( Pel,    _area ) : nullptr;
      }
    }
    
    void CodingStructure::destroyCoeffs()
    {
      for( uint32_t i = 0; i < MAX_NUM_COMPONENT; i++ )
      {
        if( m_coeffs[i] ) { xFree( m_coeffs[i] ); m_coeffs[i] = nullptr; }
        if( m_pcmbuf[i] ) { xFree( m_pcmbuf[i] ); m_pcmbuf[i] = nullptr; }
      }
    }
    
    void CodingStructure::initSubStructure( CodingStructure& subStruct, const ChannelType _chType, const UnitArea &subArea, const bool &isTuEnc )
    {
      CHECK( this == &subStruct, "Trying to init self as sub-structure" );
    
      for( uint32_t i = 0; i < subStruct.area.blocks.size(); i++ )
      {
        CHECKD( subStruct.area.blocks[i].size() != subArea.blocks[i].size(), "Trying to init sub-structure of incompatible size" );
    
        subStruct.area.blocks[i].pos() = subArea.blocks[i].pos();
      }
    
      if( parent )
      {
        // allow this to be false at the top level (need for edge CTU's)
        CHECKD( !area.contains( subStruct.area ), "Trying to init sub-structure not contained in the parent" );
      }
    
      subStruct.parent    = this;
      subStruct.picture   = picture;
    
      subStruct.sps       = sps;
    #if HEVC_VPS
      subStruct.vps       = vps;
    #endif
      subStruct.pps       = pps;
      subStruct.slice     = slice;
      subStruct.baseQP    = baseQP;
      subStruct.prevQP[_chType]
                          = prevQP[_chType];
      subStruct.pcv       = pcv;
    
      subStruct.m_isTuEnc = isTuEnc;
    
      subStruct.initStructData( currQP[_chType], isLossless );
    
      if( isTuEnc )
      {
        CHECKD( area != subStruct.area, "Trying to init sub-structure for TU-encoding of incompatible size" );
    
        for( const auto &pcu : cus )
        {
          CodingUnit &cu = subStruct.addCU( *pcu, _chType );
    
          cu = *pcu;
        }
    
        for( const auto &ppu : pus )
        {
          PredictionUnit &pu = subStruct.addPU( *ppu, _chType );
    
          pu = *ppu;
        }
    
        unsigned numComp = ::getNumberValidChannels( area.chromaFormat );
        for( unsigned i = 0; i < numComp; i++)
        {
          ::memcpy( subStruct.m_isDecomp[i], m_isDecomp[i], (unitScale[i].scale( area.blocks[i].size() ).area() * sizeof( bool ) ) );
        }
      }
    }
    
    void CodingStructure::useSubStructure( const CodingStructure& subStruct, const ChannelType chType, const UnitArea &subArea, const bool cpyPred /*= true*/, const bool cpyReco /*= true*/, const bool cpyOrgResi /*= true*/, const bool cpyResi /*= true*/ )
    {
      UnitArea clippedArea = clipArea( subArea, *picture );
    
      setDecomp( clippedArea );
    
      CPelUnitBuf subPredBuf = cpyPred ? subStruct.getPredBuf( clippedArea ) : CPelUnitBuf();
      CPelUnitBuf subResiBuf = cpyResi ? subStruct.getResiBuf( clippedArea ) : CPelUnitBuf();
      CPelUnitBuf subRecoBuf = cpyReco ? subStruct.getRecoBuf( clippedArea ) : CPelUnitBuf();
    
      if( parent )
      {
        // copy data to picture
        if( cpyPred )    getPredBuf   ( clippedArea ).copyFrom( subPredBuf );
        if( cpyResi )    getResiBuf   ( clippedArea ).copyFrom( subResiBuf );
        if( cpyReco )    getRecoBuf   ( clippedArea ).copyFrom( subRecoBuf );
        if( cpyOrgResi ) getOrgResiBuf( clippedArea ).copyFrom( subStruct.getOrgResiBuf( clippedArea ) );
      }
    
      if( cpyPred ) picture->getPredBuf( clippedArea ).copyFrom( subPredBuf );
      if( cpyResi ) picture->getResiBuf( clippedArea ).copyFrom( subResiBuf );
      if( cpyReco ) picture->getRecoBuf( clippedArea ).copyFrom( subRecoBuf );
    
    
    Xiaozhong Xu's avatar
    Xiaozhong Xu committed
    #if JVET_L0293_CPR
      if (!subStruct.m_isTuEnc && (!slice->isIntra() && subStruct.chType != CHANNEL_TYPE_CHROMA))
    #else
    
      if( !subStruct.m_isTuEnc && !slice->isIntra() )
    
    Xiaozhong Xu's avatar
    Xiaozhong Xu committed
    #endif
    
      {
        // copy motion buffer
        MotionBuf ownMB  = getMotionBuf          ( clippedArea );
        CMotionBuf subMB = subStruct.getMotionBuf( clippedArea );
    
        ownMB.copyFrom( subMB );
      }
    #if ENABLE_WPP_PARALLELISM
    
      if( nullptr == parent )
      {
    #pragma omp critical
        {
          fracBits += subStruct.fracBits;
          dist     += subStruct.dist;
          cost     += subStruct.cost;
    
          if( parent )
          {
            // allow this to be false at the top level
            CHECKD( !area.contains( subArea ), "Trying to use a sub-structure not contained in self" );
          }
    
          // copy the CUs over
          if( subStruct.m_isTuEnc )
          {
            // don't copy if the substruct was created for encoding of the TUs
          }
          else
          {
            for( const auto &pcu : subStruct.cus )
            {
              // add an analogue CU into own CU store
              const UnitArea &cuPatch = *pcu;
    
              CodingUnit &cu = addCU( cuPatch, chType );
    
              // copy the CU info from subPatch
              cu = *pcu;
            }
          }
    
          // copy the PUs over
          if( subStruct.m_isTuEnc )
          {
            // don't copy if the substruct was created for encoding of the TUs
          }
          else
          {
            for( const auto &ppu : subStruct.pus )
            {
              // add an analogue PU into own PU store
              const UnitArea &puPatch = *ppu;
    
              PredictionUnit &pu = addPU( puPatch, chType );
    
              // copy the PU info from subPatch
              pu = *ppu;
            }
          }
          // copy the TUs over
          for( const auto &ptu : subStruct.tus )
          {
            // add an analogue TU into own TU store
            const UnitArea &tuPatch = *ptu;
    
            TransformUnit &tu = addTU( tuPatch, chType );
    
            // copy the TU info from subPatch
            tu = *ptu;
          }
        }
    
        return;
      }
    #endif
    
      fracBits += subStruct.fracBits;
      dist     += subStruct.dist;
      cost     += subStruct.cost;
    
      if( parent )
      {
        // allow this to be false at the top level
        CHECKD( !area.contains( subArea ), "Trying to use a sub-structure not contained in self" );
      }
    
      // copy the CUs over
      if( subStruct.m_isTuEnc )
      {
        // don't copy if the substruct was created for encoding of the TUs
      }
      else
      {
        for( const auto &pcu : subStruct.cus )
        {
          // add an analogue CU into own CU store
          const UnitArea &cuPatch = *pcu;
    
          CodingUnit &cu = addCU( cuPatch, chType );
    
          // copy the CU info from subPatch
          cu = *pcu;
        }
      }
    
      // copy the PUs over
      if( subStruct.m_isTuEnc )
      {
        // don't copy if the substruct was created for encoding of the TUs
      }
      else
      {
        for( const auto &ppu : subStruct.pus )
        {
          // add an analogue PU into own PU store
          const UnitArea &puPatch = *ppu;
    
          PredictionUnit &pu = addPU( puPatch, chType );
    
          // copy the PU info from subPatch
          pu = *ppu;
        }
      }
      // copy the TUs over
      for( const auto &ptu : subStruct.tus )
      {
        // add an analogue TU into own TU store
        const UnitArea &tuPatch = *ptu;
    
        TransformUnit &tu = addTU( tuPatch, chType );
    
        // copy the TU info from subPatch
        tu = *ptu;
      }
    }
    
    void CodingStructure::copyStructure( const CodingStructure& other, const ChannelType chType, const bool copyTUs, const bool copyRecoBuf )
    {
      fracBits = other.fracBits;
      dist     = other.dist;
      cost     = other.cost;
    
      CHECKD( area != other.area, "Incompatible sizes" );
    
      const UnitArea dualITreeArea = CS::getArea( *this, this->area, chType );
    
      // copy the CUs over
      for (const auto &pcu : other.cus)
      {
        if( !dualITreeArea.contains( *pcu ) )
        {
          continue;
        }
        // add an analogue CU into own CU store
        const UnitArea &cuPatch = *pcu;
    
        CodingUnit &cu = addCU(cuPatch, chType);
    
        // copy the CU info from subPatch
        cu = *pcu;
      }
    
      // copy the PUs over
      for (const auto &ppu : other.pus)
      {
        if( !dualITreeArea.contains( *ppu ) )
        {
          continue;
        }
        // add an analogue PU into own PU store
        const UnitArea &puPatch = *ppu;
    
        PredictionUnit &pu = addPU(puPatch, chType);
    
        // copy the PU info from subPatch
        pu = *ppu;
      }
    
      if( !other.slice->isIntra() )
      {
        // copy motion buffer
        MotionBuf  ownMB = getMotionBuf();
        CMotionBuf subMB = other.getMotionBuf();
    
        ownMB.copyFrom( subMB );
      }
    
      if( copyTUs )
      {
        // copy the TUs over
        for( const auto &ptu : other.tus )
        {
          if( !dualITreeArea.contains( *ptu ) )
          {
            continue;
          }
          // add an analogue TU into own TU store
          const UnitArea &tuPatch = *ptu;
    
          TransformUnit &tu = addTU( tuPatch, chType );
    
          // copy the TU info from subPatch
          tu = *ptu;
        }
      }
    
      if( copyRecoBuf )
      {
        CPelUnitBuf recoBuf = other.getRecoBuf( area );
    
        if( parent )
        {
          // copy data to self for neighbors
          getRecoBuf( area ).copyFrom( recoBuf );
        }
    
        // copy data to picture
        picture->getRecoBuf( area ).copyFrom( recoBuf );
      }
    }
    
    void CodingStructure::initStructData( const int &QP, const bool &_isLosses, const bool &skipMotBuf )
    {
      clearPUs();
      clearTUs();
      clearCUs();
    
      if( QP >= 0 )
      {
        currQP[0] = currQP[1] = QP;
        isLossless            = _isLosses;
      }
    
      if( !skipMotBuf && ( !parent || ( ( slice->getSliceType() != I_SLICE ) && !m_isTuEnc ) ) )
      {
        getMotionBuf()      .memset( 0 );
      }
    
      fracBits = 0;
      dist     = 0;
      cost     = MAX_DOUBLE;
      interHad = std::numeric_limits<Distortion>::max();
    }