Forked from
jvet / VVCSoftware_VTM
7931 commits behind the upstream repository.
-
Liang Zhao authoredLiang Zhao authored
IntraPrediction.cpp 86.05 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "IntraPrediction.h"
#include "Unit.h"
#include "UnitTools.h"
#include "Buffer.h"
#include "dtrace_next.h"
#include "Rom.h"
#include <memory.h>
#if JVET_L0628_4TAP_INTRA
#include "CommonLib/InterpolationFilter.h"
#endif //JVET_L0628_4TAP_INTRA
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Tables
// ====================================================================================================================
const uint8_t IntraPrediction::m_aucIntraFilter[MAX_NUM_CHANNEL_TYPE][MAX_INTRA_FILTER_DEPTHS] =
{
{ // Luma
20, // 1xn
20, // 2xn
20, // 4xn
14, // 8xn
2, // 16xn
0, // 32xn
#if HM_MDIS_AS_IN_JEM && !JVET_L0628_4TAP_INTRA
20, // 64xn
#else
0, // 64xn
#endif
0, // 128xn
},
{ // Chroma
40, // 1xn
40, // 2xn
40, // 4xn
28, // 8xn
4, // 16xn
0, // 32xn
#if HM_MDIS_AS_IN_JEM && !JVET_L0628_4TAP_INTRA
40, // 64xn
#else
0, // 64xn
#endif
0, // 128xn
}
};
#if JVET_L0628_4TAP_INTRA
const TFilterCoeff g_intraGaussFilter[32][4] = {
{ 16, 32, 16, 0 },
{ 15, 29, 17, 3 },
{ 15, 29, 17, 3 },
{ 14, 29, 18, 3 },
{ 13, 29, 18, 4 },
{ 13, 28, 19, 4 },
{ 13, 28, 19, 4 },
{ 12, 28, 20, 4 },
{ 11, 28, 20, 5 },
{ 11, 27, 21, 5 },
{ 10, 27, 22, 5 },
{ 9, 27, 22, 6 },
{ 9, 26, 23, 6 },
{ 9, 26, 23, 6 },
{ 8, 25, 24, 7 },
{ 8, 25, 24, 7 },
{ 8, 24, 24, 8 },
{ 7, 24, 25, 8 },
{ 7, 24, 25, 8 },
{ 6, 23, 26, 9 },
{ 6, 23, 26, 9 },
{ 6, 22, 27, 9 },
{ 5, 22, 27, 10 },
{ 5, 21, 27, 11 },
{ 5, 20, 28, 11 },
{ 4, 20, 28, 12 },
{ 4, 19, 28, 13 },
{ 4, 19, 28, 13 },
{ 4, 18, 29, 13 },
{ 3, 18, 29, 14 },
{ 3, 17, 29, 15 },
{ 3, 17, 29, 15 }
};
#endif
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
IntraPrediction::IntraPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
{
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < NUM_PRED_BUF; buf++)
{
m_piYuvExt[ch][buf] = nullptr;
}
}
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < 4; buf++)
{
m_yuvExt2[ch][buf] = nullptr;
}
}
#endif
m_piTemp = nullptr;
#if JVET_L0338_MDLM
m_pMdlmTemp = nullptr;
#endif
}
IntraPrediction::~IntraPrediction()
{
destroy();
}
void IntraPrediction::destroy()
{
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < NUM_PRED_BUF; buf++)
{
delete[] m_piYuvExt[ch][buf];
m_piYuvExt[ch][buf] = nullptr;
}
}
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < 4; buf++)
{
delete[] m_yuvExt2[ch][buf];
m_yuvExt2[ch][buf] = nullptr;
}
}
#endif
delete[] m_piTemp;
m_piTemp = nullptr;
#if JVET_L0338_MDLM
delete[] m_pMdlmTemp;
m_pMdlmTemp = nullptr;
#endif
}
void IntraPrediction::init(ChromaFormat chromaFormatIDC, const unsigned bitDepthY)
{
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if (m_piYuvExt[COMPONENT_Y][PRED_BUF_UNFILTERED] != nullptr && m_currChromaFormat != chromaFormatIDC)
{
destroy();
}
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
if (m_yuvExt2[COMPONENT_Y][0] != nullptr && m_currChromaFormat != chromaFormatIDC)
{
destroy();
}
#endif
m_currChromaFormat = chromaFormatIDC;
if (m_piYuvExt[COMPONENT_Y][PRED_BUF_UNFILTERED] == nullptr) // check if first is null (in which case, nothing initialised yet)
{
#if JVET_L0283_MULTI_REF_LINE
#if JVET_L0279_WAIP_CLEANUP
m_iYuvExtSize = (MAX_CU_SIZE * 2 + 1 + MAX_REF_LINE_IDX * 33) * (MAX_CU_SIZE * 2 + 1 + MAX_REF_LINE_IDX * 33);
#else
m_iYuvExtSize = (MAX_CU_SIZE * 2 + 1 + MAX_REF_LINE_IDX * 5) * (MAX_CU_SIZE * 2 + 1 + MAX_REF_LINE_IDX * 5);
#endif
#else
m_iYuvExtSize = (MAX_CU_SIZE * 2 + 1) * (MAX_CU_SIZE * 2 + 1);
#endif
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < NUM_PRED_BUF; buf++)
{
m_piYuvExt[ch][buf] = new Pel[m_iYuvExtSize];
}
}
}
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
if (m_yuvExt2[COMPONENT_Y][0] == nullptr) // check if first is null (in which case, nothing initialised yet)
{
m_yuvExtSize2 = (MAX_CU_SIZE) * (MAX_CU_SIZE);
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < 4; buf++)
{
m_yuvExt2[ch][buf] = new Pel[m_yuvExtSize2];
}
}
}
#endif
int shift = bitDepthY + 4;
for (int i = 32; i < 64; i++)
{
m_auShiftLM[i - 32] = ((1 << shift) + i / 2) / i;
}
if (m_piTemp == nullptr)
{
m_piTemp = new Pel[(MAX_CU_SIZE + 1) * (MAX_CU_SIZE + 1)];
}
#if JVET_L0338_MDLM
if (m_pMdlmTemp == nullptr)
{
m_pMdlmTemp = new Pel[(2 * MAX_CU_SIZE + 1)*(2 * MAX_CU_SIZE + 1)];//MDLM will use top-above and left-below samples.
}
#endif
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
// Function for calculating DC value of the reference samples used in Intra prediction
//NOTE: Bit-Limit - 25-bit source
Pel IntraPrediction::xGetPredValDc( const CPelBuf &pSrc, const Size &dstSize )
{
CHECK( dstSize.width == 0 || dstSize.height == 0, "Empty area provided" );
int idx, sum = 0;
Pel dcVal;
const int width = dstSize.width;
const int height = dstSize.height;
const auto denom = (width == height) ? (width << 1) : std::max(width,height);
const auto divShift = g_aucLog2[denom];
const auto divOffset = (denom >> 1);
if ( width >= height )
{
for( idx = 0; idx < width; idx++ )
{
sum += pSrc.at( 1 + idx, 0 );
}
}
if ( width <= height )
{
for( idx = 0; idx < height; idx++ )
{
sum += pSrc.at( 0, 1 + idx );
}
}
dcVal = (sum + divOffset) >> divShift;
return dcVal;
}
int IntraPrediction::getWideAngle( int width, int height, int predMode )
{
if ( predMode > DC_IDX && predMode <= VDIA_IDX )
{
#if JVET_L0279_WAIP_CLEANUP
int modeShift[] = { 0, 6, 10, 12, 14, 15 };
int deltaSize = abs(g_aucLog2[width] - g_aucLog2[height]);
if (width > height && predMode < 2 + modeShift[deltaSize])
{
predMode += (VDIA_IDX - 1);
}
else if (height > width && predMode > VDIA_IDX - modeShift[deltaSize])
{
predMode -= (VDIA_IDX - 1);
}
#else
int modeShift = (std::min(2, abs(g_aucLog2[width] - g_aucLog2[height])) << 2) + 2;
if ( width > height && predMode < 2 + modeShift )
{
predMode += (VDIA_IDX - 1);
}
else if ( height > width && predMode > VDIA_IDX - modeShift )
{
predMode -= (VDIA_IDX - 1);
}
#endif
}
return predMode;
}
void IntraPrediction::setReferenceArrayLengths( const CompArea &area )
{
// set Top and Left reference samples length
const int width = area.width;
const int height = area.height;
#if !JVET_L0279_WAIP_CLEANUP
int blockShapeRatio = std::min(2, abs(g_aucLog2[width] - g_aucLog2[height]));
#endif
m_leftRefLength = (height << 1);
m_topRefLength = (width << 1);
#if !JVET_L0279_WAIP_CLEANUP
if( width > height )
{
m_leftRefLength += (width >> blockShapeRatio) - height + ((width + 31) >> 5);
}
else if( height > width )
{
m_topRefLength += (height >> blockShapeRatio) - width + ((height + 31) >> 5);
}
#endif
}
void IntraPrediction::predIntraAng( const ComponentID compId, PelBuf &piPred, const PredictionUnit &pu, const bool useFilteredPredSamples )
{
const ComponentID compID = MAP_CHROMA( compId );
const ChannelType channelType = toChannelType( compID );
const int iWidth = piPred.width;
const int iHeight = piPred.height;
const uint32_t uiDirMode = PU::getFinalIntraMode( pu, channelType );
CHECK( g_aucLog2[iWidth] < 2 && pu.cs->pcv->noChroma2x2, "Size not allowed" );
CHECK( g_aucLog2[iWidth] > 7, "Size not allowed" );
CHECK( iWidth != iHeight && !pu.cs->pcv->rectCUs, "Rectangular block are only allowed with QTBT" );
#if JVET_L0283_MULTI_REF_LINE
const int multiRefIdx = (compID == COMPONENT_Y) ? pu.multiRefIdx : 0;
#if JVET_L0279_WAIP_CLEANUP
int whRatio = std::max(1, iWidth / iHeight);
int hwRatio = std::max(1, iHeight / iWidth);
const int srcStride = m_topRefLength + 1 + (whRatio + 1) * multiRefIdx;
const int srcHStride = m_leftRefLength + 1 + (hwRatio + 1) * multiRefIdx;
#else
const int srcStride = m_topRefLength + 1 + 5 * multiRefIdx;
const int srcHStride = m_leftRefLength + 1 + 5 * multiRefIdx;
#endif
#else
const int srcStride = m_topRefLength + 1;
const int srcHStride = m_leftRefLength + 1;
#endif
Pel *ptrSrc = getPredictorPtr(compID, useFilteredPredSamples);
const ClpRng& clpRng(pu.cu->cs->slice->clpRng(compID));
switch (uiDirMode)
{
case(PLANAR_IDX): xPredIntraPlanar(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, *pu.cs->sps); break;
case(DC_IDX): xPredIntraDc(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, channelType, false); break;
#if JVET_L0628_4TAP_INTRA
case(2):
case(DIA_IDX):
case(VDIA_IDX):
if (getWideAngle(iWidth, iHeight, uiDirMode) == static_cast<int>(uiDirMode)) // check if uiDirMode is not wide-angle
{
xPredIntraAng(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, channelType, uiDirMode, clpRng, *pu.cs->sps
#if JVET_L0283_MULTI_REF_LINE
, multiRefIdx
#endif
, useFilteredPredSamples);
break;
}
default: xPredIntraAng(CPelBuf(getPredictorPtr(compID, false), srcStride, srcHStride), piPred, channelType, uiDirMode, clpRng, *pu.cs->sps
#if JVET_L0283_MULTI_REF_LINE
, multiRefIdx
#endif
, useFilteredPredSamples); break;
#else //JVET_L0628_4TAP_INTRA
default: xPredIntraAng(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, channelType, uiDirMode, clpRng, *pu.cs->sps
#if JVET_L0283_MULTI_REF_LINE
, multiRefIdx
#endif
, false); break;
#endif //JVET_L0628_4TAP_INTRA
}
bool pdpcCondition = (uiDirMode == PLANAR_IDX || uiDirMode == DC_IDX || uiDirMode == HOR_IDX || uiDirMode == VER_IDX);
#if JVET_L0283_MULTI_REF_LINE
if (pdpcCondition && multiRefIdx == 0)
#else
if (pdpcCondition)
#endif
{
const CPelBuf srcBuf = CPelBuf(ptrSrc, srcStride, srcStride);
PelBuf dstBuf = piPred;
const int scale = ((g_aucLog2[iWidth] - 2 + g_aucLog2[iHeight] - 2 + 2) >> 2);
CHECK(scale < 0 || scale > 31, "PDPC: scale < 0 || scale > 31");
if (uiDirMode == PLANAR_IDX)
{
for (int y = 0; y < iHeight; y++)
{
int wT = 32 >> std::min(31, ((y << 1) >> scale));
const Pel left = srcBuf.at(0, y + 1);
for (int x = 0; x < iWidth; x++)
{
const Pel top = srcBuf.at(x + 1, 0);
int wL = 32 >> std::min(31, ((x << 1) >> scale));
dstBuf.at(x, y) = ClipPel((wL * left + wT * top + (64 - wL - wT) * dstBuf.at(x, y) + 32) >> 6, clpRng);
}
}
}
else if (uiDirMode == DC_IDX)
{
const Pel topLeft = srcBuf.at(0, 0);
for (int y = 0; y < iHeight; y++)
{
int wT = 32 >> std::min(31, ((y << 1) >> scale));
const Pel left = srcBuf.at(0, y + 1);
for (int x = 0; x < iWidth; x++)
{
const Pel top = srcBuf.at(x + 1, 0);
int wL = 32 >> std::min(31, ((x << 1) >> scale));
int wTL = (wL >> 4) + (wT >> 4);
dstBuf.at(x, y) = ClipPel((wL * left + wT * top - wTL * topLeft + (64 - wL - wT + wTL) * dstBuf.at(x, y) + 32) >> 6, clpRng);
}
}
}
else if (uiDirMode == HOR_IDX)
{
const Pel topLeft = srcBuf.at(0, 0);
for (int y = 0; y < iHeight; y++)
{
int wT = 32 >> std::min(31, ((y << 1) >> scale));
for (int x = 0; x < iWidth; x++)
{
const Pel top = srcBuf.at(x + 1, 0);
int wTL = wT;
dstBuf.at(x, y) = ClipPel((wT * top - wTL * topLeft + (64 - wT + wTL) * dstBuf.at(x, y) + 32) >> 6, clpRng);
}
}
}
else if (uiDirMode == VER_IDX)
{
const Pel topLeft = srcBuf.at(0, 0);
for (int y = 0; y < iHeight; y++)
{
const Pel left = srcBuf.at(0, y + 1);
for (int x = 0; x < iWidth; x++)
{
int wL = 32 >> std::min(31, ((x << 1) >> scale));
int wTL = wL;
dstBuf.at(x, y) = ClipPel((wL * left - wTL * topLeft + (64 - wL + wTL) * dstBuf.at(x, y) + 32) >> 6, clpRng);
}
}
}
}
}
void IntraPrediction::predIntraChromaLM(const ComponentID compID, PelBuf &piPred, const PredictionUnit &pu, const CompArea& chromaArea, int intraDir)
{
int iLumaStride = 0;
PelBuf Temp;
#if JVET_L0338_MDLM
if ((intraDir == MDLM_L_IDX) || (intraDir == MDLM_T_IDX))
{
iLumaStride = 2 * MAX_CU_SIZE + 1;
Temp = PelBuf(m_pMdlmTemp + iLumaStride + 1, iLumaStride, Size(chromaArea));
}
else
{
#endif
iLumaStride = MAX_CU_SIZE + 1;
Temp = PelBuf(m_piTemp + iLumaStride + 1, iLumaStride, Size(chromaArea));
#if JVET_L0338_MDLM
}
#endif
int a, b, iShift;
xGetLMParameters(pu, compID, chromaArea, a, b, iShift);
////// final prediction
piPred.copyFrom(Temp);
piPred.linearTransform(a, iShift, b, true, pu.cs->slice->clpRng(compID));
}
void IntraPrediction::xFilterGroup(Pel* pMulDst[], int i, Pel const * const piSrc, int iRecStride, bool bAboveAvaillable, bool bLeftAvaillable)
{
pMulDst[0][i] = (piSrc[1] + piSrc[iRecStride + 1] + 1) >> 1;
pMulDst[1][i] = (piSrc[iRecStride] + piSrc[iRecStride + 1] + 1) >> 1;
pMulDst[3][i] = (piSrc[0] + piSrc[1] + 1) >> 1;
pMulDst[2][i] = (piSrc[0] + piSrc[1] + piSrc[iRecStride] + piSrc[iRecStride + 1] + 2) >> 2;
}
/** Function for deriving planar intra prediction. This function derives the prediction samples for planar mode (intra coding).
*/
//NOTE: Bit-Limit - 24-bit source
void IntraPrediction::xPredIntraPlanar( const CPelBuf &pSrc, PelBuf &pDst, const SPS& sps )
{
const uint32_t width = pDst.width;
const uint32_t height = pDst.height;
const uint32_t log2W = g_aucLog2[ width ];
const uint32_t log2H = g_aucLog2[ height ];
int leftColumn[MAX_CU_SIZE + 1], topRow[MAX_CU_SIZE + 1], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE];
const uint32_t offset = width * height;
// Get left and above reference column and row
for( int k = 0; k < width + 1; k++ )
{
topRow[k] = pSrc.at( k + 1, 0 );
}
for( int k = 0; k < height + 1; k++ )
{
leftColumn[k] = pSrc.at( 0, k + 1 );
}
// Prepare intermediate variables used in interpolation
int bottomLeft = leftColumn[height];
int topRight = topRow[width];
for( int k = 0; k < width; k++ )
{
bottomRow[k] = bottomLeft - topRow[k];
topRow[k] = topRow[k] << log2H;
}
for( int k = 0; k < height; k++ )
{
rightColumn[k] = topRight - leftColumn[k];
leftColumn[k] = leftColumn[k] << log2W;
}
const uint32_t finalShift = 1 + log2W + log2H;
const uint32_t stride = pDst.stride;
Pel* pred = pDst.buf;
for( int y = 0; y < height; y++, pred += stride )
{
int horPred = leftColumn[y];
for( int x = 0; x < width; x++ )
{
horPred += rightColumn[y];
topRow[x] += bottomRow[x];
int vertPred = topRow[x];
pred[x] = ( ( horPred << log2H ) + ( vertPred << log2W ) + offset ) >> finalShift;
}
}
}
void IntraPrediction::xPredIntraDc( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const bool enableBoundaryFilter )
{
const Pel dcval = xGetPredValDc( pSrc, pDst );
pDst.fill( dcval );
#if HEVC_USE_DC_PREDFILTERING
if( enableBoundaryFilter )
{
xDCPredFiltering( pSrc, pDst, channelType );
}
#endif
}
#if HEVC_USE_DC_PREDFILTERING
/** Function for filtering intra DC predictor. This function performs filtering left and top edges of the prediction samples for DC mode (intra coding).
*/
void IntraPrediction::xDCPredFiltering(const CPelBuf &pSrc, PelBuf &pDst, const ChannelType &channelType)
{
uint32_t iWidth = pDst.width;
uint32_t iHeight = pDst.height;
int x, y;
if (isLuma(channelType) && (iWidth <= MAXIMUM_INTRA_FILTERED_WIDTH) && (iHeight <= MAXIMUM_INTRA_FILTERED_HEIGHT))
{
//top-left
pDst.at(0, 0) = (Pel)((pSrc.at(1, 0) + pSrc.at(0, 1) + 2 * pDst.at(0, 0) + 2) >> 2);
//top row (vertical filter)
for ( x = 1; x < iWidth; x++ )
{
pDst.at(x, 0) = (Pel)((pSrc.at(x + 1, 0) + 3 * pDst.at(x, 0) + 2) >> 2);
}
//left column (horizontal filter)
for ( y = 1; y < iHeight; y++ )
{
pDst.at(0, y) = (Pel)((pSrc.at(0, y + 1) + 3 * pDst.at(0, y) + 2) >> 2);
}
}
return;
}
#endif
// Function for deriving the angular Intra predictions
/** Function for deriving the simplified angular intra predictions.
*
* This function derives the prediction samples for the angular mode based on the prediction direction indicated by
* the prediction mode index. The prediction direction is given by the displacement of the bottom row of the block and
* the reference row above the block in the case of vertical prediction or displacement of the rightmost column
* of the block and reference column left from the block in the case of the horizontal prediction. The displacement
* is signalled at 1/32 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples,
* the predicted value for the pixel is linearly interpolated from the reference samples. All reference samples are taken
* from the extended main reference.
*/
//NOTE: Bit-Limit - 25-bit source
#if HEVC_USE_HOR_VER_PREDFILTERING
void IntraPrediction::xPredIntraAng( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const uint32_t dirMode, const ClpRng& clpRng, const bool bEnableEdgeFilters, const SPS& sps
#if JVET_L0283_MULTI_REF_LINE
, int multiRefIdx
#endif
, const bool enableBoundaryFilter )
#elif JVET_L0628_4TAP_INTRA
void IntraPrediction::xPredIntraAng( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const uint32_t dirMode, const ClpRng& clpRng, const SPS& sps
#if JVET_L0283_MULTI_REF_LINE
, int multiRefIdx
#endif
, const bool useFilteredPredSamples )
#else
void IntraPrediction::xPredIntraAng( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const uint32_t dirMode, const ClpRng& clpRng, const SPS& sps
#if JVET_L0283_MULTI_REF_LINE
, int multiRefIdx
#endif
, const bool enableBoundaryFilter )
#endif
{
int width =int(pDst.width);
int height=int(pDst.height);
CHECK( !( dirMode > DC_IDX && dirMode < NUM_LUMA_MODE ), "Invalid intra dir" );
int predMode = getWideAngle(width, height, dirMode);
const bool bIsModeVer = predMode >= DIA_IDX;
const int intraPredAngleMode = (bIsModeVer) ? predMode - VER_IDX : -(predMode - HOR_IDX);
const int absAngMode = abs(intraPredAngleMode);
const int signAng = intraPredAngleMode < 0 ? -1 : 1;
#if HEVC_USE_HOR_VER_PREDFILTERING
const bool edgeFilter = bEnableEdgeFilters && isLuma(channelType) && (width <= MAXIMUM_INTRA_FILTERED_WIDTH) && (height <= MAXIMUM_INTRA_FILTERED_HEIGHT);
#endif
// Set bitshifts and scale the angle parameter to block size
#if JVET_L0279_WAIP_CLEANUP
static const int angTable[32] = { 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 29, 32, 35, 39, 45, 51, 57, 64, 73, 85, 102, 128, 171, 256, 341, 512, 1024 };
static const int invAngTable[32] = { 0, 8192, 4096, 2731, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 356, 315, 282, 256, 234, 210, 182, 160, 144, 128, 112, 96, 80, 64, 48, 32, 24, 16, 8 }; // (256 * 32) / Angle
#else
static const int angTable[27] = { 0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 26, 29, 32, 35, 39, 45, 49, 54, 60, 68, 79, 93, 114 };
static const int invAngTable[27] = { 0, 8192, 4096, 2731, 1638, 1170, 910, 745, 630, 546, 482, 431, 390, 356, 315, 282, 256, 234, 210, 182, 167, 152, 137, 120, 104, 88, 72 }; // (256 * 32) / Angle
#endif
int invAngle = invAngTable[absAngMode];
int absAng = angTable [absAngMode];
int intraPredAngle = signAng * absAng;
Pel* refMain;
Pel* refSide;
#if JVET_L0283_MULTI_REF_LINE
#if JVET_L0279_WAIP_CLEANUP
Pel refAbove[2 * MAX_CU_SIZE + 3 + 33 * MAX_REF_LINE_IDX];
Pel refLeft [2 * MAX_CU_SIZE + 3 + 33 * MAX_REF_LINE_IDX];
#else
Pel refAbove[2 * MAX_CU_SIZE + 3 + 5 * MAX_REF_LINE_IDX];
Pel refLeft [2 * MAX_CU_SIZE + 3 + 5 * MAX_REF_LINE_IDX];
#endif
#else
Pel refAbove[2 * MAX_CU_SIZE + 3];
Pel refLeft [2 * MAX_CU_SIZE + 3];
#endif
#if JVET_L0279_WAIP_CLEANUP && JVET_L0283_MULTI_REF_LINE
int whRatio = std::max(1, width / height);
int hwRatio = std::max(1, height / width);
#endif
// Initialize the Main and Left reference array.
if (intraPredAngle < 0)
{
#if JVET_L0628_4TAP_INTRA
auto width = int(pDst.width) +1;
auto height = int(pDst.height)+1;
#if JVET_L0283_MULTI_REF_LINE
auto lastIdx = (bIsModeVer ? width : height) + multiRefIdx;
#else
auto lastIdx = bIsModeVer ? width : height;
#endif
auto firstIdx = ( ((bIsModeVer ? height : width) -1) * intraPredAngle ) >> 5;
#endif //JVET_L0628_4TAP_INTRA
#if JVET_L0283_MULTI_REF_LINE
for (int x = 0; x < width + 1 + multiRefIdx; x++)
#else
for( int x = 0; x < width + 1; x++ )
#endif
{
refAbove[x + height - 1] = pSrc.at( x, 0 );
}
#if JVET_L0283_MULTI_REF_LINE
for (int y = 0; y < height + 1 + multiRefIdx; y++)
#else
for( int y = 0; y < height + 1; y++ )
#endif
{
refLeft[y + width - 1] = pSrc.at( 0, y );
}
refMain = (bIsModeVer ? refAbove + height : refLeft + width ) - 1;
refSide = (bIsModeVer ? refLeft + width : refAbove + height) - 1;
// Extend the Main reference to the left.
int invAngleSum = 128; // rounding for (shift by 8)
#if JVET_L0628_4TAP_INTRA
for( int k = -1; k > firstIdx; k-- )
#else //JVET_L0628_4TAP_INTRA
const int refMainOffsetPreScale = bIsModeVer ? height : width;
for( int k = -1; k > (refMainOffsetPreScale * intraPredAngle) >> 5; k-- )
#endif //JVET_L0628_4TAP_INTRA
{
invAngleSum += invAngle;
refMain[k] = refSide[invAngleSum>>8];
}
#if JVET_L0628_4TAP_INTRA
refMain[lastIdx] = refMain[lastIdx-1];
refMain[firstIdx] = refMain[firstIdx+1];
#endif //JVET_L0628_4TAP_INTRA
}
else
{
#if JVET_L0283_MULTI_REF_LINE
#if JVET_L0279_WAIP_CLEANUP
for (int x = 0; x < m_topRefLength + 1 + (whRatio + 1) * multiRefIdx; x++)
#else
for (int x = 0; x < m_topRefLength + 1 + 5 * multiRefIdx; x++)
#endif
#else
for( int x = 0; x < m_topRefLength + 1; x++ )
#endif
{
#if JVET_L0628_4TAP_INTRA
refAbove[x+1] = pSrc.at(x, 0);
#else //JVET_L0628_4TAP_INTRA
refAbove[x] = pSrc.at(x, 0);
#endif //JVET_L0628_4TAP_INTRA
}
#if JVET_L0283_MULTI_REF_LINE
#if JVET_L0279_WAIP_CLEANUP
for (int y = 0; y < m_leftRefLength + 1 + (hwRatio + 1) * multiRefIdx; y++)
#else
for (int y = 0; y < m_leftRefLength + 1 + 5 * multiRefIdx; y++)
#endif
#else
for( int y = 0; y < m_leftRefLength + 1; y++ )
#endif
{
#if JVET_L0628_4TAP_INTRA
refLeft[y+1] = pSrc.at(0, y);
#else //JVET_L0628_4TAP_INTRA
refLeft[y] = pSrc.at(0, y);
#endif //JVET_L0628_4TAP_INTRA
}
refMain = bIsModeVer ? refAbove : refLeft ;
refSide = bIsModeVer ? refLeft : refAbove;
#if JVET_L0628_4TAP_INTRA
refMain++;
refSide++;
refMain[-1] = refMain[0];
#if JVET_L0283_MULTI_REF_LINE
#if JVET_L0279_WAIP_CLEANUP
auto lastIdx = 1 + ((bIsModeVer) ? m_topRefLength + (whRatio + 1) * multiRefIdx : m_leftRefLength + (hwRatio + 1) * multiRefIdx);
#else
auto lastIdx = 1 + ((bIsModeVer) ? m_topRefLength : m_leftRefLength) + 5 * multiRefIdx;
#endif
#else
auto lastIdx = 1 + ((bIsModeVer) ? m_topRefLength : m_leftRefLength);
#endif
refMain[lastIdx] = refMain[lastIdx-1];
#endif //JVET_L0628_4TAP_INTRA
}
// swap width/height if we are doing a horizontal mode:
Pel tempArray[MAX_CU_SIZE*MAX_CU_SIZE];
const int dstStride = bIsModeVer ? pDst.stride : MAX_CU_SIZE;
Pel *pDstBuf = bIsModeVer ? pDst.buf : tempArray;
if (!bIsModeVer)
{
std::swap(width, height);
}
#if JVET_L0283_MULTI_REF_LINE
// compensate for line offset in reference line buffers
refMain += multiRefIdx;
refSide += multiRefIdx;
#endif
if( intraPredAngle == 0 ) // pure vertical or pure horizontal
{
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
pDstBuf[y*dstStride + x] = refMain[x + 1];
}
}
#if HEVC_USE_HOR_VER_PREDFILTERING
#if JVET_L0283_MULTI_REF_LINE
if (edgeFilter && multiRefIdx == 0)
#else
if (edgeFilter)
#endif
{
for( int y = 0; y < height; y++ )
{
pDstBuf[y*dstStride] = ClipPel( pDstBuf[y*dstStride] + ( ( refSide[y + 1] - refSide[0] ) >> 1 ), clpRng );
}
}
#endif
}
else
{
Pel *pDsty=pDstBuf;
#if JVET_L0283_MULTI_REF_LINE
for (int y = 0, deltaPos = intraPredAngle * (1 + multiRefIdx); y<height; y++, deltaPos += intraPredAngle, pDsty += dstStride)
#else
for (int y=0, deltaPos=intraPredAngle; y<height; y++, deltaPos+=intraPredAngle, pDsty+=dstStride)
#endif
{
const int deltaInt = deltaPos >> 5;
const int deltaFract = deltaPos & (32 - 1);
#if JVET_L0628_4TAP_INTRA
#if JVET_L0279_WAIP_CLEANUP
if (absAng != 0 && absAng != 32)
#else
if( (absAng & (32 - 1)) != 0 ) // use 4-tap interpolation only for intra prediction modes with fractional displacements
#endif
#elif HM_4TAPIF_AS_IN_JEM
if( deltaFract )
#else //JVET_L0628_4TAP_INTRA
if( absAng < 32 )
#endif
{
#if JVET_L0628_4TAP_INTRA
if( isLuma(channelType) )
{
Pel p[4];
#if JVET_L0283_MULTI_REF_LINE
const bool useCubicFilter = !useFilteredPredSamples || multiRefIdx > 0;
#else
const bool useCubicFilter = !useFilteredPredSamples;
#endif
TFilterCoeff const * const f = (useCubicFilter) ? InterpolationFilter::getChromaFilterTable(deltaFract) : g_intraGaussFilter[deltaFract];
int refMainIndex = deltaInt + 1;
for( int x = 0; x < width; x++, refMainIndex++ )
{
p[0] = refMain[refMainIndex - 1];
p[1] = refMain[refMainIndex];
p[2] = refMain[refMainIndex + 1];
p[3] = refMain[refMainIndex + 2];
pDstBuf[y*dstStride + x] = static_cast<Pel>((static_cast<int>(f[0] * p[0]) + static_cast<int>(f[1] * p[1]) + static_cast<int>(f[2] * p[2]) + static_cast<int>(f[3] * p[3]) + 32) >> 6);
if( useCubicFilter ) // only cubic filter has negative coefficients and requires clipping
{
pDstBuf[y*dstStride + x] = ClipPel( pDstBuf[y*dstStride + x], clpRng );
}
}
}
else
#endif //JVET_L0628_4TAP_INTRA
{
// Do linear filtering
const Pel *pRM = refMain + deltaInt + 1;
int lastRefMainPel = *pRM++;
for( int x = 0; x < width; pRM++, x++ )
{
int thisRefMainPel = *pRM;
pDsty[x + 0] = ( Pel ) ( ( ( 32 - deltaFract )*lastRefMainPel + deltaFract*thisRefMainPel + 16 ) >> 5 );
lastRefMainPel = thisRefMainPel;
}
}
}
else
{
// Just copy the integer samples
for( int x = 0; x < width; x++ )
{
pDsty[x] = refMain[x + deltaInt + 1];
}
}
const int numModes = 8;
const int scale = ((g_aucLog2[width] - 2 + g_aucLog2[height] - 2 + 2) >> 2);
CHECK(scale < 0 || scale > 31, "PDPC: scale < 0 || scale > 31");
#if JVET_L0283_MULTI_REF_LINE
if ((predMode == 2 || predMode == VDIA_IDX) && multiRefIdx == 0)
#else
if (predMode == 2 || predMode == VDIA_IDX)
#endif
{
int wT = 16 >> std::min(31, ((y << 1) >> scale));
for (int x = 0; x < width; x++)
{
int wL = 16 >> std::min(31, ((x << 1) >> scale));
if (wT + wL == 0) break;
int c = x + y + 1;
#if JVET_L0279_WAIP_CLEANUP
if (c >= 2 * height) { wL = 0; }
if (c >= 2 * width) { wT = 0; }
#endif
const Pel left = (wL != 0) ? refSide[c + 1] : 0;
const Pel top = (wT != 0) ? refMain[c + 1] : 0;
pDsty[x] = ClipPel((wL * left + wT * top + (64 - wL - wT) * pDsty[x] + 32) >> 6, clpRng);
}
}
#if JVET_L0283_MULTI_REF_LINE
else if (((predMode >= VDIA_IDX - numModes && predMode != VDIA_IDX) || (predMode != 2 && predMode <= (2 + numModes))) && multiRefIdx == 0)
#else
else if ((predMode >= VDIA_IDX - numModes && predMode != VDIA_IDX) || (predMode != 2 && predMode <= (2 + numModes)))
#endif
{
int invAngleSum0 = 2;
for (int x = 0; x < width; x++)
{
invAngleSum0 += invAngle;
int deltaPos0 = invAngleSum0 >> 2;
int deltaFrac0 = deltaPos0 & 63;
int deltaInt0 = deltaPos0 >> 6;
int deltay = y + deltaInt0 + 1;
if (deltay >(bIsModeVer ? m_leftRefLength : m_topRefLength) - 1) break;
int wL = 32 >> std::min(31, ((x << 1) >> scale));
if (wL == 0) break;
Pel *p = refSide + deltay;
Pel left = (((64 - deltaFrac0) * p[0] + deltaFrac0 * p[1] + 32) >> 6);
pDsty[x] = ClipPel((wL * left + (64 - wL) * pDsty[x] + 32) >> 6, clpRng);
}
}
}
#if HEVC_USE_HOR_VER_PREDFILTERING
if( edgeFilter && absAng <= 1 )
{
for( int y = 0; y < height; y++ )
{
pDstBuf[y*dstStride] = ClipPel( pDstBuf[y*dstStride] + ((refSide[y + 1] - refSide[0]) >> 2), clpRng );
}
}
#endif
}
// Flip the block if this is the horizontal mode
if( !bIsModeVer )
{
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
pDst.at( y, x ) = pDstBuf[x];
}
pDstBuf += dstStride;
}
}
}
bool IntraPrediction::useDPCMForFirstPassIntraEstimation(const PredictionUnit &pu, const uint32_t &uiDirMode)
{
return CU::isRDPCMEnabled(*pu.cu) && pu.cu->transQuantBypass && (uiDirMode == HOR_IDX || uiDirMode == VER_IDX);
}
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
void IntraPrediction::geneWeightedPred(const ComponentID compId, PelBuf &pred, const PredictionUnit &pu, Pel *srcBuf)
{
const int width = pred.width;
const int height = pred.height;
const int srcStride = width;
const int dstStride = pred.stride;
const uint32_t dirMode = PU::getFinalIntraMode(pu, toChannelType(compId));
const ClpRng& clpRng(pu.cu->cs->slice->clpRng(compId));
Pel* dstBuf = pred.buf;
int k, l;
bool modeDC = (dirMode <= DC_IDX);
Pel wIntra1 = 6, wInter1 = 2, wIntra2 = 5, wInter2 = 3, wIntra3 = 3, wInter3 = 5, wIntra4 = 2, wInter4 = 6;
if (modeDC || width < 4 || height < 4)
{
for (k = 0; k<height; k++)
{
for (l = 0; l<width; l++)
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * 4) + (srcBuf[k*srcStride + l] * 4)) >> 3), clpRng);
}
}
}
else
{
if (dirMode <= DIA_IDX)
{
int interval = (width >> 2);
for (k = 0; k<height; k++)
{
for (l = 0; l<width; l++)
{
if (l<interval)
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter1) + (srcBuf[k*srcStride + l] * wIntra1)) >> 3), clpRng);
}
else if (l >= interval && l < (2 * interval))
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter2) + (srcBuf[k*srcStride + l] * wIntra2)) >> 3), clpRng);
}
else if (l >= (interval * 2) && l < (3 * interval))
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter3) + (srcBuf[k*srcStride + l] * wIntra3)) >> 3), clpRng);
}
else
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter4) + (srcBuf[k*srcStride + l] * wIntra4)) >> 3), clpRng);
}
}
}
}
else
{
int interval = (height >> 2);
for (k = 0; k<height; k++)
{
for (l = 0; l<width; l++)
{
if (k<interval)
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter1) + (srcBuf[k*srcStride + l] * wIntra1)) >> 3), clpRng);
}
else if (k >= interval && k < (2 * interval))
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter2) + (srcBuf[k*srcStride + l] * wIntra2)) >> 3), clpRng);
}
else if (k >= (interval * 2) && k < (3 * interval))
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter3) + (srcBuf[k*srcStride + l] * wIntra3)) >> 3), clpRng);
}
else
{
dstBuf[k*dstStride + l] = ClipPel((((dstBuf[k*dstStride + l] * wInter4) + (srcBuf[k*srcStride + l] * wIntra4)) >> 3), clpRng);
}
}
}
}
}
}
void IntraPrediction::switchBuffer(const PredictionUnit &pu, ComponentID compID, PelBuf srcBuff, Pel *dst)
{
Pel *src = srcBuff.bufAt(0, 0);
int compWidth = compID == COMPONENT_Y ? pu.Y().width : pu.Cb().width;
int compHeight = compID == COMPONENT_Y ? pu.Y().height : pu.Cb().height;
for (int i = 0; i < compHeight; i++)
{
memcpy(dst, src, compWidth * sizeof(Pel));
src += srcBuff.stride;
dst += compWidth;
}
}
void IntraPrediction::geneIntrainterPred(const CodingUnit &cu)
{
if (!cu.firstPU->mhIntraFlag)
{
return;
}
const PredictionUnit* pu = cu.firstPU;
bool isUseFilter = IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, *pu, true, *pu);
initIntraPatternChType(cu, pu->Y(), isUseFilter);
predIntraAng(COMPONENT_Y, cu.cs->getPredBuf(*pu).Y(), *pu, isUseFilter);
isUseFilter = IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Cb, *pu, true, *pu);
initIntraPatternChType(cu, pu->Cb(), isUseFilter);
predIntraAng(COMPONENT_Cb, cu.cs->getPredBuf(*pu).Cb(), *pu, isUseFilter);
isUseFilter = IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Cr, *pu, true, *pu);
initIntraPatternChType(cu, pu->Cr(), isUseFilter);
predIntraAng(COMPONENT_Cr, cu.cs->getPredBuf(*pu).Cr(), *pu, isUseFilter);
for (int currCompID = 0; currCompID < 3; currCompID++)
{
ComponentID currCompID2 = (ComponentID)currCompID;
PelBuf tmpBuf = currCompID == 0 ? cu.cs->getPredBuf(*pu).Y() : (currCompID == 1 ? cu.cs->getPredBuf(*pu).Cb() : cu.cs->getPredBuf(*pu).Cr());
switchBuffer(*pu, currCompID2, tmpBuf, getPredictorPtr2(currCompID2, 0));
}
}
#endif
inline bool isAboveLeftAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT );
inline int isAboveAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *validFlags );
inline int isLeftAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *validFlags );
inline int isAboveRightAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posRT, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *validFlags );
inline int isBelowLeftAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLB, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *validFlags );
void IntraPrediction::initIntraPatternChType(const CodingUnit &cu, const CompArea &area, const bool bFilterRefSamples)
{
const CodingStructure& cs = *cu.cs;
Pel *refBufUnfiltered = m_piYuvExt[area.compID][PRED_BUF_UNFILTERED];
Pel *refBufFiltered = m_piYuvExt[area.compID][PRED_BUF_FILTERED];
setReferenceArrayLengths(area);
// ----- Step 1: unfiltered reference samples -----
xFillReferenceSamples( cs.picture->getRecoBuf( area ), refBufUnfiltered, area, cu );
// ----- Step 2: filtered reference samples -----
if( bFilterRefSamples )
{
xFilterReferenceSamples( refBufUnfiltered, refBufFiltered, area, *cs.sps
#if JVET_L0283_MULTI_REF_LINE
, cu.firstPU->multiRefIdx
#endif
);
}
}
void IntraPrediction::xFillReferenceSamples( const CPelBuf &recoBuf, Pel* refBufUnfiltered, const CompArea &area, const CodingUnit &cu )
{
const ChannelType chType = toChannelType( area.compID );
const CodingStructure &cs = *cu.cs;
const SPS &sps = *cs.sps;
const PreCalcValues &pcv = *cs.pcv;
#if JVET_L0283_MULTI_REF_LINE
const int multiRefIdx = (area.compID == COMPONENT_Y) ? cu.firstPU->multiRefIdx : 0;
#endif
const int tuWidth = area.width;
const int tuHeight = area.height;
const int predSize = m_topRefLength;
const int predHSize = m_leftRefLength;
#if JVET_L0283_MULTI_REF_LINE
#if JVET_L0279_WAIP_CLEANUP
int whRatio = std::max(1, tuWidth / tuHeight);
int hwRatio = std::max(1, tuHeight / tuWidth);
const int predStride = predSize + 1 + (whRatio + 1) * multiRefIdx;
#else
const int predStride = predSize + 1 + 5 * multiRefIdx;
#endif
#else
const int predStride = predSize + 1;
#endif
const bool noShift = pcv.noChroma2x2 && area.width == 4; // don't shift on the lowest level (chroma not-split)
const int unitWidth = pcv.minCUWidth >> (noShift ? 0 : getComponentScaleX( area.compID, sps.getChromaFormatIdc() ));
const int unitHeight = pcv.minCUHeight >> (noShift ? 0 : getComponentScaleY( area.compID, sps.getChromaFormatIdc() ));
const int totalAboveUnits = (predSize + (unitWidth - 1)) / unitWidth;
const int totalLeftUnits = (predHSize + (unitHeight - 1)) / unitHeight;
const int totalUnits = totalAboveUnits + totalLeftUnits + 1; //+1 for top-left
const int numAboveUnits = std::max<int>( tuWidth / unitWidth, 1 );
const int numLeftUnits = std::max<int>( tuHeight / unitHeight, 1 );
const int numAboveRightUnits = totalAboveUnits - numAboveUnits;
const int numLeftBelowUnits = totalLeftUnits - numLeftUnits;
CHECK( numAboveUnits <= 0 || numLeftUnits <= 0 || numAboveRightUnits <= 0 || numLeftBelowUnits <= 0, "Size not supported" );
// ----- Step 1: analyze neighborhood -----
const Position posLT = area;
const Position posRT = area.topRight();
const Position posLB = area.bottomLeft();
bool neighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
int numIntraNeighbor = 0;
memset( neighborFlags, 0, totalUnits );
neighborFlags[totalLeftUnits] = isAboveLeftAvailable( cu, chType, posLT );
numIntraNeighbor += neighborFlags[totalLeftUnits] ? 1 : 0;
numIntraNeighbor += isAboveAvailable ( cu, chType, posLT, numAboveUnits, unitWidth, (neighborFlags + totalLeftUnits + 1) );
numIntraNeighbor += isAboveRightAvailable( cu, chType, posRT, numAboveRightUnits, unitWidth, (neighborFlags + totalLeftUnits + 1 + numAboveUnits) );
numIntraNeighbor += isLeftAvailable ( cu, chType, posLT, numLeftUnits, unitHeight, (neighborFlags + totalLeftUnits - 1) );
numIntraNeighbor += isBelowLeftAvailable ( cu, chType, posLB, numLeftBelowUnits, unitHeight, (neighborFlags + totalLeftUnits - 1 - numLeftUnits) );
// ----- Step 2: fill reference samples (depending on neighborhood) -----
CHECK((predHSize + 1) * predStride > m_iYuvExtSize, "Reference sample area not supported");
const Pel* srcBuf = recoBuf.buf;
const int srcStride = recoBuf.stride;
Pel* ptrDst = refBufUnfiltered;
const Pel* ptrSrc;
const Pel valueDC = 1 << (sps.getBitDepth( chType ) - 1);
if( numIntraNeighbor == 0 )
{
// Fill border with DC value
#if JVET_L0283_MULTI_REF_LINE
for (int j = 0; j <= predSize + multiRefIdx; j++) { ptrDst[j] = valueDC; }
for (int i = 1; i <= predHSize + multiRefIdx; i++) { ptrDst[i*predStride] = valueDC; }
#else
for( int j = 0; j <= predSize; j++ ) { ptrDst[j] = valueDC; }
for( int i = 1; i <= predHSize; i++ ) { ptrDst[i*predStride] = valueDC; }
#endif
}
else if( numIntraNeighbor == totalUnits )
{
// Fill top-left border and top and top right with rec. samples
#if JVET_L0283_MULTI_REF_LINE
ptrSrc = srcBuf - (1 + multiRefIdx) * srcStride - (1 + multiRefIdx);
for (int j = 0; j <= predSize + multiRefIdx; j++) { ptrDst[j] = ptrSrc[j]; }
ptrSrc = srcBuf - multiRefIdx * srcStride - (1 + multiRefIdx);
for (int i = 1; i <= predHSize + multiRefIdx; i++) { ptrDst[i*predStride] = *(ptrSrc); ptrSrc += srcStride; }
#else
ptrSrc = srcBuf - srcStride - 1;
for( int j = 0; j <= predSize; j++ ) { ptrDst[j] = ptrSrc[j]; }
// Fill left and below left border with rec. samples
ptrSrc = srcBuf - 1;
for( int i = 1; i <= predHSize; i++ ) { ptrDst[i*predStride] = *(ptrSrc); ptrSrc += srcStride; }
#endif
}
else // reference samples are partially available
{
#if JVET_L0283_MULTI_REF_LINE
// Fill top-left sample(s) if available
ptrSrc = srcBuf - (1 + multiRefIdx) * srcStride - (1 + multiRefIdx);
ptrDst = refBufUnfiltered;
if (neighborFlags[totalLeftUnits])
{
ptrDst[0] = ptrSrc[0];
for (int i = 1; i <= multiRefIdx; i++)
{
ptrDst[i] = ptrSrc[i];
ptrDst[i*predStride] = ptrSrc[i*srcStride];
}
}
// Fill left & below-left samples if available (downwards)
ptrSrc += (1 + multiRefIdx) * srcStride;
ptrDst += (1 + multiRefIdx) * predStride;
for (int unitIdx = totalLeftUnits - 1; unitIdx > 0; unitIdx--)
{
if (neighborFlags[unitIdx])
{
for (int i = 0; i < unitHeight; i++)
{
ptrDst[i*predStride] = ptrSrc[i*srcStride];
}
}
ptrSrc += unitHeight * srcStride;
ptrDst += unitHeight * predStride;
}
// Fill last below-left sample(s)
if (neighborFlags[0])
{
int lastSample = (predHSize % unitHeight == 0) ? unitHeight : predHSize % unitHeight;
for (int i = 0; i < lastSample; i++)
{
ptrDst[i*predStride] = ptrSrc[i*srcStride];
}
}
// Fill above & above-right samples if available (left-to-right)
ptrSrc = srcBuf - srcStride * (1 + multiRefIdx);
ptrDst = refBufUnfiltered + 1 + multiRefIdx;
for (int unitIdx = totalLeftUnits + 1; unitIdx < totalUnits - 1; unitIdx++)
{
if (neighborFlags[unitIdx])
{
for (int j = 0; j < unitWidth; j++)
{
ptrDst[j] = ptrSrc[j];
}
}
ptrSrc += unitWidth;
ptrDst += unitWidth;
}
// Fill last above-right sample(s)
if (neighborFlags[totalUnits - 1])
{
int lastSample = (predSize % unitWidth == 0) ? unitWidth : predSize % unitWidth;
for (int j = 0; j < lastSample; j++)
{
ptrDst[j] = ptrSrc[j];
}
}
// pad from first available down to the last below-left
ptrDst = refBufUnfiltered;
int lastAvailUnit = 0;
if (!neighborFlags[0])
{
int firstAvailUnit = 1;
while (firstAvailUnit < totalUnits && !neighborFlags[firstAvailUnit])
{
firstAvailUnit++;
}
// first available sample
int firstAvailRow = 0;
int firstAvailCol = 0;
if (firstAvailUnit < totalLeftUnits)
{
firstAvailRow = (totalLeftUnits - firstAvailUnit) * unitHeight + multiRefIdx;
}
else if (firstAvailUnit == totalLeftUnits)
{
firstAvailRow = multiRefIdx;
}
else
{
firstAvailCol = (firstAvailUnit - totalLeftUnits - 1) * unitWidth + 1 + multiRefIdx;
}
const Pel firstAvailSample = ptrDst[firstAvailCol + firstAvailRow * predStride];
// last sample below-left (n.a.)
int lastRow = predHSize + multiRefIdx;
// fill left column
for (int i = lastRow; i > firstAvailRow; i--)
{
ptrDst[i*predStride] = firstAvailSample;
}
// fill top row
if (firstAvailCol > 0)
{
for (int j = 0; j < firstAvailCol; j++)
{
ptrDst[j] = firstAvailSample;
}
}
lastAvailUnit = firstAvailUnit;
}
// pad all other reference samples.
int currUnit = lastAvailUnit + 1;
while (currUnit < totalUnits)
{
if (!neighborFlags[currUnit]) // samples not available
{
// last available sample
int lastAvailRow = 0;
int lastAvailCol = 0;
if (lastAvailUnit < totalLeftUnits)
{
lastAvailRow = (totalLeftUnits - lastAvailUnit - 1) * unitHeight + multiRefIdx + 1;
}
else if (lastAvailUnit == totalLeftUnits)
{
lastAvailCol = multiRefIdx;
}
else
{
lastAvailCol = (lastAvailUnit - totalLeftUnits) * unitWidth + multiRefIdx;
}
const Pel lastAvailSample = ptrDst[lastAvailCol + lastAvailRow * predStride];
// fill current unit with last available sample
if (currUnit < totalLeftUnits)
{
for (int i = lastAvailRow - 1; i <= lastAvailRow + unitHeight; i++)
{
ptrDst[i*predStride] = lastAvailSample;
}
}
else if (currUnit == totalLeftUnits)
{
for (int i = 1; i < multiRefIdx + 1; i++)
{
ptrDst[i*predStride] = lastAvailSample;
}
for (int j = 0; j < multiRefIdx + 1; j++)
{
ptrDst[j] = lastAvailSample;
}
}
else
{
int numSamplesInUnit = (currUnit == totalUnits - 1) ? ((predSize % unitWidth == 0) ? unitWidth : predSize % unitWidth) : unitWidth;
for (int j = lastAvailCol + 1; j <= lastAvailCol + numSamplesInUnit; j++)
{
ptrDst[j] = lastAvailSample;
}
}
}
lastAvailUnit = currUnit;
currUnit++;
}
#else
// BB: old implementation using tmpLineBuf
// ---------------------------------------
Pel tmpLineBuf[5 * MAX_CU_SIZE];
Pel* ptrTmp;
int unitIdx;
// Initialize
const int totalSamples = (totalLeftUnits * unitHeight) + ((totalAboveUnits + 1) * unitWidth); // all above units have "unitWidth" samples each, all left/below-left units have "unitHeight" samples each
for( int k = 0; k < totalSamples; k++ ) { tmpLineBuf[k] = valueDC; }
// Fill top-left sample
ptrSrc = srcBuf - srcStride - 1;
ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight);
unitIdx = totalLeftUnits;
if( neighborFlags[unitIdx] )
{
Pel topLeftVal = ptrSrc[0];
for( int j = 0; j < unitWidth; j++ ) { ptrTmp[j] = topLeftVal; }
}
// Fill left & below-left samples (downwards)
ptrSrc += srcStride;
ptrTmp--;
unitIdx--;
for( int k = 0; k < totalLeftUnits; k++ )
{
if( neighborFlags[unitIdx] )
{
for( int i = 0; i < unitHeight; i++ ) { ptrTmp[-i] = ptrSrc[i*srcStride]; }
}
ptrSrc += unitHeight*srcStride;
ptrTmp -= unitHeight;
unitIdx--;
}
// Fill above & above-right samples (left-to-right) (each unit has "unitWidth" samples)
ptrSrc = srcBuf - srcStride;
ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight) + unitWidth; // offset line buffer by totalLeftUnits*unitHeight (for left/below-left) + unitWidth (for above-left)
unitIdx = totalLeftUnits + 1;
for( int k = 0; k < totalAboveUnits; k++ )
{
if( neighborFlags[unitIdx] )
{
for( int j = 0; j < unitWidth; j++ ) { ptrTmp[j] = ptrSrc[j]; }
}
ptrSrc += unitWidth;
ptrTmp += unitWidth;
unitIdx++;
}
// Pad reference samples when necessary
int currUnit = 0;
Pel* ptrTmpCurrUnit = tmpLineBuf;
if( !neighborFlags[0] )
{
int nextUnit = 1;
while( nextUnit < totalUnits && !neighborFlags[nextUnit] )
{
nextUnit++;
}
Pel* ptrTmpRef = tmpLineBuf + ((nextUnit < totalLeftUnits) ? (nextUnit * unitHeight) : ((totalLeftUnits * (unitHeight - unitWidth)) + (nextUnit * unitWidth)));
const Pel refSample = *ptrTmpRef;
// Pad unavailable samples with new value
// fill left column
while( currUnit < std::min<int>( nextUnit, totalLeftUnits ) )
{
for( int i = 0; i < unitHeight; i++ ) { ptrTmpCurrUnit[i] = refSample; }
ptrTmpCurrUnit += unitHeight;
currUnit++;
}
// fill top row
while( currUnit < nextUnit )
{
for( int j = 0; j < unitWidth; j++ ) { ptrTmpCurrUnit[j] = refSample; }
ptrTmpCurrUnit += unitWidth;
currUnit++;
}
}
// pad all other reference samples.
while( currUnit < totalUnits )
{
const int numSamplesInCurrUnit = (currUnit >= totalLeftUnits) ? unitWidth : unitHeight;
if( !neighborFlags[currUnit] ) // samples not available
{
const Pel refSample = *(ptrTmpCurrUnit - 1);
for( int k = 0; k < numSamplesInCurrUnit; k++ ) { ptrTmpCurrUnit[k] = refSample; }
}
ptrTmpCurrUnit += numSamplesInCurrUnit;
currUnit++;
}
// Copy processed samples
ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight) + (unitWidth - 1);
for( int j = 0; j <= predSize; j++ ) { ptrDst[j] = ptrTmp[j]; } // top left, top and top right samples
ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight);
for( int i = 1; i <= predHSize; i++ ) { ptrDst[i*predStride] = ptrTmp[-i]; }
#endif
}
#if JVET_L0283_MULTI_REF_LINE
// padding of extended samples above right with the last sample
int lastSample = multiRefIdx + predSize;
#if JVET_L0279_WAIP_CLEANUP
for (int j = 1; j <= whRatio * multiRefIdx; j++) { ptrDst[lastSample + j] = ptrDst[lastSample]; }
#else
for (int j = 1; j <= 4 * multiRefIdx; j++) { ptrDst[lastSample + j] = ptrDst[lastSample]; }
#endif
// padding of extended samples below left with the last sample
lastSample = multiRefIdx + predHSize;
#if JVET_L0279_WAIP_CLEANUP
for (int i = 1; i <= hwRatio * multiRefIdx; i++) { ptrDst[(lastSample + i)*predStride] = ptrDst[lastSample*predStride]; }
#else
for (int i = 1; i <= 4 * multiRefIdx; i++) { ptrDst[(lastSample + i)*predStride] = ptrDst[lastSample*predStride]; }
#endif
#endif
}
void IntraPrediction::xFilterReferenceSamples( const Pel* refBufUnfiltered, Pel* refBufFiltered, const CompArea &area, const SPS &sps
#if JVET_L0283_MULTI_REF_LINE
, int multiRefIdx
#endif
)
{
#if JVET_L0283_MULTI_REF_LINE
if (area.compID != COMPONENT_Y)
{
multiRefIdx = 0;
}
#if JVET_L0279_WAIP_CLEANUP
int whRatio = std::max(1, int(area.width / area.height));
int hwRatio = std::max(1, int(area.height / area.width));
const int predSize = m_topRefLength + (whRatio + 1) * multiRefIdx;
const int predHSize = m_leftRefLength + (hwRatio + 1) * multiRefIdx;
#else
const int predSize = m_topRefLength + 5 * multiRefIdx;
const int predHSize = m_leftRefLength + 5 * multiRefIdx;
#endif
#else
const int predSize = m_topRefLength;
const int predHSize = m_leftRefLength;
#endif
const int predStride = predSize + 1;
#if HEVC_USE_INTRA_SMOOTHING_T32 || HEVC_USE_INTRA_SMOOTHING_T64
// Strong intra smoothing
ChannelType chType = toChannelType( area.compID );
if( sps.getUseStrongIntraSmoothing() && isLuma( chType ) )
{
const Pel bottomLeft = refBufUnfiltered[predStride * predHSize];
const Pel topLeft = refBufUnfiltered[0];
const Pel topRight = refBufUnfiltered[predSize];
const int threshold = 1 << (sps.getBitDepth( chType ) - 5);
const bool bilinearLeft = abs( (bottomLeft + topLeft) - (2 * refBufUnfiltered[predStride * tuHeight]) ) < threshold; //difference between the
const bool bilinearAbove = abs( (topLeft + topRight) - (2 * refBufUnfiltered[ tuWidth ]) ) < threshold; //ends and the middle
if( tuWidth >= 32 && tuHeight >= 32 && bilinearLeft && bilinearAbove )
#if !HEVC_USE_INTRA_SMOOTHING_T32
if( tuWidth > 32 && tuHeight > 32 )
#endif
#if !HEVC_USE_INTRA_SMOOTHING_T64
if( tuWidth < 64 && tuHeight < 64 )
#endif
{
Pel *piDestPtr = refBufFiltered + (predStride * predHSize); // bottom left
// apply strong intra smoothing
for (int i = 0; i < predHSize; i++, piDestPtr -= predStride) //left column (bottom to top)
{
*piDestPtr = (((predHSize - i) * bottomLeft) + (i * topLeft) + predHSize / 2) / predHSize;
}
for( uint32_t i = 0; i <= predSize; i++, piDestPtr++ ) //full top row (left-to-right)
{
*piDestPtr = (((predSize - i) * topLeft) + (i * topRight) + predSize / 2) / predSize;
}
return;
}
}
#endif
// Regular reference sample filter
const Pel *piSrcPtr = refBufUnfiltered + (predStride * predHSize); // bottom left
Pel *piDestPtr = refBufFiltered + (predStride * predHSize); // bottom left
// bottom left (not filtered)
*piDestPtr = *piSrcPtr;
piDestPtr -= predStride;
piSrcPtr -= predStride;
//left column (bottom to top)
for( int i = 1; i < predHSize; i++, piDestPtr -= predStride, piSrcPtr -= predStride)
{
*piDestPtr = (piSrcPtr[predStride] + 2 * piSrcPtr[0] + piSrcPtr[-predStride] + 2) >> 2;
}
//top-left
*piDestPtr = (piSrcPtr[predStride] + 2 * piSrcPtr[0] + piSrcPtr[1] + 2) >> 2;
piDestPtr++;
piSrcPtr++;
//top row (left-to-right)
for( uint32_t i=1; i < predSize; i++, piDestPtr++, piSrcPtr++ )
{
*piDestPtr = (piSrcPtr[1] + 2 * piSrcPtr[0] + piSrcPtr[-1] + 2) >> 2;
}
// top right (not filtered)
*piDestPtr=*piSrcPtr;
}
bool IntraPrediction::useFilteredIntraRefSamples( const ComponentID &compID, const PredictionUnit &pu, bool modeSpecific, const UnitArea &tuArea )
{
const SPS &sps = *pu.cs->sps;
const ChannelType chType = toChannelType( compID );
// high level conditions
if( sps.getSpsRangeExtension().getIntraSmoothingDisabledFlag() ) { return false; }
if( !isLuma( chType ) && pu.chromaFormat != CHROMA_444 ) { return false; }
if( !modeSpecific ) { return true; }
#if JVET_L0283_MULTI_REF_LINE
if (pu.multiRefIdx) { return false; }
#endif
// pred. mode related conditions
const int dirMode = PU::getFinalIntraMode( pu, chType );
int predMode = getWideAngle(tuArea.blocks[compID].width, tuArea.blocks[compID].height, dirMode);
#if JVET_L0279_WAIP_CLEANUP
if (predMode != dirMode ) { return true; }
#else
if (predMode != dirMode && (predMode < 2 || predMode > VDIA_IDX)) { return true; }
#endif
if (dirMode == DC_IDX) { return false; }
if (dirMode == PLANAR_IDX)
{
return tuArea.blocks[compID].width * tuArea.blocks[compID].height > 32 ? true : false;
}
int diff = std::min<int>( abs( dirMode - HOR_IDX ), abs( dirMode - VER_IDX ) );
int log2Size = ((g_aucLog2[tuArea.blocks[compID].width] + g_aucLog2[tuArea.blocks[compID].height]) >> 1);
CHECK( log2Size >= MAX_INTRA_FILTER_DEPTHS, "Size not supported" );
return (diff > m_aucIntraFilter[chType][log2Size]);
}
bool isAboveLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT)
{
const CodingStructure& cs = *cu.cs;
const Position refPos = posLT.offset(-1, -1);
const CodingUnit* pcCUAboveLeft = cs.isDecomp( refPos, chType ) ? cs.getCURestricted( refPos, cu, chType ) : nullptr;
const bool isConstrained = cs.pps->getConstrainedIntraPred();
bool bAboveLeftFlag;
if (isConstrained)
{
bAboveLeftFlag = pcCUAboveLeft && CU::isIntra(*pcCUAboveLeft);
}
else
{
bAboveLeftFlag = (pcCUAboveLeft ? true : false);
}
return bAboveLeftFlag;
}
int isAboveAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *bValidFlags)
{
const CodingStructure& cs = *cu.cs;
const bool isConstrained = cs.pps->getConstrainedIntraPred();
bool *pbValidFlags = bValidFlags;
int iNumIntra = 0;
int maxDx = uiNumUnitsInPU * unitWidth;
for (uint32_t dx = 0; dx < maxDx; dx += unitWidth)
{
const Position refPos = posLT.offset(dx, -1);
const CodingUnit* pcCUAbove = cs.isDecomp(refPos, chType) ? cs.getCURestricted(refPos, cu, chType) : nullptr;
if( pcCUAbove && ( ( isConstrained && CU::isIntra( *pcCUAbove ) ) || !isConstrained ) )
{
iNumIntra++;
*pbValidFlags = true;
}
else if( !pcCUAbove )
{
return iNumIntra;
}
pbValidFlags++;
}
return iNumIntra;
}
int isLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *bValidFlags)
{
const CodingStructure& cs = *cu.cs;
const bool isConstrained = cs.pps->getConstrainedIntraPred();
bool *pbValidFlags = bValidFlags;
int iNumIntra = 0;
int maxDy = uiNumUnitsInPU * unitHeight;
for (uint32_t dy = 0; dy < maxDy; dy += unitHeight)
{
const Position refPos = posLT.offset(-1, dy);
const CodingUnit* pcCULeft = cs.isDecomp(refPos, chType) ? cs.getCURestricted(refPos, cu, chType) : nullptr;
if( pcCULeft && ( ( isConstrained && CU::isIntra( *pcCULeft ) ) || !isConstrained ) )
{
iNumIntra++;
*pbValidFlags = true;
}
else if( !pcCULeft )
{
return iNumIntra;
}
pbValidFlags--; // opposite direction
}
return iNumIntra;
}
int isAboveRightAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posRT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *bValidFlags )
{
const CodingStructure& cs = *cu.cs;
const bool isConstrained = cs.pps->getConstrainedIntraPred();
bool *pbValidFlags = bValidFlags;
int iNumIntra = 0;
uint32_t maxDx = uiNumUnitsInPU * unitWidth;
for (uint32_t dx = 0; dx < maxDx; dx += unitWidth)
{
const Position refPos = posRT.offset(unitWidth + dx, -1);
const CodingUnit* pcCUAbove = cs.isDecomp(refPos, chType) ? cs.getCURestricted(refPos, cu, chType) : nullptr;
if( pcCUAbove && ( ( isConstrained && CU::isIntra( *pcCUAbove ) ) || !isConstrained ) )
{
iNumIntra++;
*pbValidFlags = true;
}
else if( !pcCUAbove )
{
return iNumIntra;
}
pbValidFlags++;
}
return iNumIntra;
}
int isBelowLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLB, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *bValidFlags )
{
const CodingStructure& cs = *cu.cs;
const bool isConstrained = cs.pps->getConstrainedIntraPred();
bool *pbValidFlags = bValidFlags;
int iNumIntra = 0;
int maxDy = uiNumUnitsInPU * unitHeight;
for (uint32_t dy = 0; dy < maxDy; dy += unitHeight)
{
const Position refPos = posLB.offset(-1, unitHeight + dy);
const CodingUnit* pcCULeft = cs.isDecomp(refPos, chType) ? cs.getCURestricted(refPos, cu, chType) : nullptr;
if( pcCULeft && ( ( isConstrained && CU::isIntra( *pcCULeft ) ) || !isConstrained ) )
{
iNumIntra++;
*pbValidFlags = true;
}
else if ( !pcCULeft )
{
return iNumIntra;
}
pbValidFlags--; // opposite direction
}
return iNumIntra;
}
// LumaRecPixels
void IntraPrediction::xGetLumaRecPixels(const PredictionUnit &pu, CompArea chromaArea)
{
int iDstStride = 0;
Pel* pDst0 = 0;
#if JVET_L0338_MDLM
int curChromaMode = pu.intraDir[1];
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
iDstStride = 2 * MAX_CU_SIZE + 1;
pDst0 = m_pMdlmTemp + iDstStride + 1;
}
else
{
#endif
iDstStride = MAX_CU_SIZE + 1;
pDst0 = m_piTemp + iDstStride + 1; //MMLM_SAMPLE_NEIGHBOR_LINES;
#if JVET_L0338_MDLM
}
#endif
//assert 420 chroma subsampling
CompArea lumaArea = CompArea( COMPONENT_Y, pu.chromaFormat, chromaArea.lumaPos(), recalcSize( pu.chromaFormat, CHANNEL_TYPE_CHROMA, CHANNEL_TYPE_LUMA, chromaArea.size() ) );//needed for correct pos/size (4x4 Tus)
CHECK( lumaArea.width == chromaArea.width, "" );
CHECK( lumaArea.height == chromaArea.height, "" );
const SizeType uiCWidth = chromaArea.width;
const SizeType uiCHeight = chromaArea.height;
const CPelBuf Src = pu.cs->picture->getRecoBuf( lumaArea );
Pel const* pRecSrc0 = Src.bufAt( 0, 0 );
int iRecStride = Src.stride;
int iRecStride2 = iRecStride << 1;
CodingStructure& cs = *pu.cs;
const CodingUnit& lumaCU = isChroma( pu.chType ) ? *pu.cs->picture->cs->getCU( lumaArea.pos(), CH_L ) : *pu.cu;
const CodingUnit& cu = *pu.cu;
const CompArea& area = isChroma( pu.chType ) ? chromaArea : lumaArea;
const SPS &sps = *cs.sps;
const uint32_t uiTuWidth = area.width;
const uint32_t uiTuHeight = area.height;
int iBaseUnitSize = ( 1 << MIN_CU_LOG2 );
if( !cs.pcv->rectCUs )
{
iBaseUnitSize = sps.getMaxCUWidth() >> sps.getMaxCodingDepth();
}
const int iUnitWidth = iBaseUnitSize >> getComponentScaleX( area.compID, area.chromaFormat );
const int iUnitHeight = iBaseUnitSize >> getComponentScaleX( area.compID, area.chromaFormat );
const int iTUWidthInUnits = uiTuWidth / iUnitWidth;
const int iTUHeightInUnits = uiTuHeight / iUnitHeight;
const int iAboveUnits = iTUWidthInUnits;
const int iLeftUnits = iTUHeightInUnits;
#if JVET_L0338_MDLM
const int chromaUnitWidth = iBaseUnitSize >> getComponentScaleX(COMPONENT_Cb, area.chromaFormat);
const int chromaUnitHeight = iBaseUnitSize >> getComponentScaleX(COMPONENT_Cb, area.chromaFormat);
const int topTemplateSampNum = 2 * uiCWidth; // for MDLM, the number of template samples is 2W or 2H.
const int leftTemplateSampNum = 2 * uiCHeight;
assert(m_topRefLength >= topTemplateSampNum);
assert(m_leftRefLength >= leftTemplateSampNum);
const int totalAboveUnits = (topTemplateSampNum + (chromaUnitWidth - 1)) / chromaUnitWidth;
const int totalLeftUnits = (leftTemplateSampNum + (chromaUnitHeight - 1)) / chromaUnitHeight;
const int totalUnits = totalLeftUnits + totalAboveUnits + 1;
const int aboveRightUnits = totalAboveUnits - iAboveUnits;
const int leftBelowUnits = totalLeftUnits - iLeftUnits;
int avaiAboveRightUnits = 0;
int avaiLeftBelowUnits = 0;
#endif
bool bNeighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
#if JVET_L0338_MDLM
memset(bNeighborFlags, 0, totalUnits);
#else
memset( bNeighborFlags, 0, 1 + iLeftUnits + iAboveUnits );
#endif
bool bAboveAvaillable, bLeftAvaillable;
int availlableUnit = isLeftAvailable( isChroma( pu.chType ) ? cu : lumaCU, toChannelType( area.compID ), area.pos(), iLeftUnits, iUnitHeight,
#if JVET_L0338_MDLM
( bNeighborFlags + iLeftUnits + leftBelowUnits - 1 ) );
#else
( bNeighborFlags + iLeftUnits - 1 ) );
#endif
if( lumaCU.cs->pcv->rectCUs )
{
bLeftAvaillable = availlableUnit == iTUHeightInUnits;
}
else
{
bLeftAvaillable = availlableUnit == iTUWidthInUnits;
}
availlableUnit = isAboveAvailable( isChroma( pu.chType ) ? cu : lumaCU, toChannelType( area.compID ), area.pos(), iAboveUnits, iUnitWidth,
#if JVET_L0338_MDLM
( bNeighborFlags + iLeftUnits + leftBelowUnits + 1 ) );
#else
( bNeighborFlags + iLeftUnits + 1 ) );
#endif
if( lumaCU.cs->pcv->rectCUs )
{
bAboveAvaillable = availlableUnit == iTUWidthInUnits;
}
else
{
bAboveAvaillable = availlableUnit == iTUHeightInUnits;
}
#if JVET_L0338_MDLM
if (bLeftAvaillable) // if left is not available, then the below left is not available
{
avaiLeftBelowUnits = isBelowLeftAvailable(isChroma(pu.chType) ? cu : lumaCU, toChannelType(area.compID), area.bottomLeftComp(area.compID), leftBelowUnits, iUnitHeight, (bNeighborFlags + leftBelowUnits - 1));
}
if (bAboveAvaillable) // if above is not available, then the above right is not available.
{
avaiAboveRightUnits = isAboveRightAvailable(isChroma(pu.chType) ? cu : lumaCU, toChannelType(area.compID), area.topRightComp(area.compID), aboveRightUnits, iUnitWidth, (bNeighborFlags + iLeftUnits + leftBelowUnits + iAboveUnits + 1));
}
#endif
Pel* pDst = nullptr;
Pel const* piSrc = nullptr;
#if JVET_L0136_L0085_LM_RESTRICTED_LINEBUFFER
bool isFirstRowOfCtu = ((pu.block(COMPONENT_Cb).y)&(((pu.cs->sps)->getMaxCUWidth() >> 1) - 1)) == 0;
#endif
if( bAboveAvaillable )
{
pDst = pDst0 - iDstStride;
#if !JVET_L0136_L0085_LM_RESTRICTED_LINEBUFFER
piSrc = pRecSrc0 - iRecStride2;
#endif
#if JVET_L0338_MDLM
int addedAboveRight = 0;
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
addedAboveRight = avaiAboveRightUnits*chromaUnitWidth;
}
for (int i = 0; i < uiCWidth + addedAboveRight; i++)
#else
for( int i = 0; i < uiCWidth; i++ )
#endif
{
#if JVET_L0136_L0085_LM_RESTRICTED_LINEBUFFER
if (isFirstRowOfCtu)
{
piSrc = pRecSrc0 - iRecStride;
if (i == 0 && !bLeftAvaillable)
{
pDst[i] = piSrc[2 * i];
}
else
{
pDst[i] = ( piSrc[2 * i] * 2 + piSrc[2 * i - 1] + piSrc[2 * i + 1] + 2 ) >> 2;
}
}
else
{
piSrc = pRecSrc0 - iRecStride2;
if (i == 0 && !bLeftAvaillable)
{
pDst[i] = ( piSrc[2 * i] + piSrc[2 * i + iRecStride] + 1 ) >> 1;
}
else
{
pDst[i] = ( ( ( piSrc[2 * i ] * 2 ) + piSrc[2 * i - 1 ] + piSrc[2 * i + 1 ] )
+ ( ( piSrc[2 * i + iRecStride] * 2 ) + piSrc[2 * i - 1 + iRecStride] + piSrc[2 * i + 1 + iRecStride] )
+ 4 ) >> 3;
}
}
#else
if( i == 0 && !bLeftAvaillable )
{
pDst[i] = ( piSrc[2 * i] + piSrc[2 * i + iRecStride] + 1 ) >> 1;
}
else
{
pDst[i] = ( ( ( piSrc[2 * i ] * 2 ) + piSrc[2 * i - 1 ] + piSrc[2 * i + 1 ] )
+ ( ( piSrc[2 * i + iRecStride] * 2 ) + piSrc[2 * i - 1 + iRecStride] + piSrc[2 * i + 1 + iRecStride] )
+ 4 ) >> 3;
}
#endif
}
}
if( bLeftAvaillable )
{
pDst = pDst0 - 1;
piSrc = pRecSrc0 - 3;
#if JVET_L0338_MDLM
int addedLeftBelow = 0;
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
addedLeftBelow = avaiLeftBelowUnits*chromaUnitHeight;
}
for (int j = 0; j < uiCHeight + addedLeftBelow; j++)
#else
for( int j = 0; j < uiCHeight; j++ )
#endif
{
pDst[0] = ( ( piSrc[1 ] * 2 + piSrc[0 ] + piSrc[2 ] )
+ ( piSrc[1 + iRecStride] * 2 + piSrc[iRecStride] + piSrc[2 + iRecStride] )
+ 4 ) >> 3;
piSrc += iRecStride2;
pDst += iDstStride;
}
}
// inner part from reconstructed picture buffer
for( int j = 0; j < uiCHeight; j++ )
{
for( int i = 0; i < uiCWidth; i++ )
{
if( i == 0 && !bLeftAvaillable )
{
pDst0[i] = ( pRecSrc0[2 * i] + pRecSrc0[2 * i + iRecStride] + 1 ) >> 1;
}
else
{
pDst0[i] = ( pRecSrc0[2 * i ] * 2 + pRecSrc0[2 * i + 1 ] + pRecSrc0[2 * i - 1 ]
+ pRecSrc0[2 * i + iRecStride] * 2 + pRecSrc0[2 * i + 1 + iRecStride] + pRecSrc0[2 * i - 1 + iRecStride]
+ 4 ) >> 3;
}
}
pDst0 += iDstStride;
pRecSrc0 += iRecStride2;
}
}
#if JVET_L0338_MDLM && !JVET_L0191_LM_WO_LMS
void IntraPrediction::xPadMdlmTemplateSample(Pel*pSrc, Pel*pCur, int cWidth, int cHeight, int existSampNum, int targetSampNum)
{
int sampNumToBeAdd = targetSampNum - existSampNum;
Pel*pTempSrc = pSrc + existSampNum;
Pel*pTempCur = pCur + existSampNum;
for (int i = 0; i < sampNumToBeAdd; i++)
{
pTempSrc[i] = pSrc[existSampNum - 1];
pTempCur[i] = pCur[existSampNum - 1];
}
}
#endif
#if JVET_L0191_LM_WO_LMS
void IntraPrediction::xGetLMParameters(const PredictionUnit &pu, const ComponentID compID,
const CompArea &chromaArea,
int &a, int &b, int &iShift)
{
CHECK(compID == COMPONENT_Y, "");
const SizeType cWidth = chromaArea.width;
const SizeType cHeight = chromaArea.height;
const Position posLT = chromaArea;
CodingStructure & cs = *(pu.cs);
const CodingUnit &cu = *(pu.cu);
const SPS & sps = *cs.sps;
const uint32_t tuWidth = chromaArea.width;
const uint32_t tuHeight = chromaArea.height;
const ChromaFormat nChromaFormat = sps.getChromaFormatIdc();
const int baseUnitSize = 1 << MIN_CU_LOG2;
const int unitWidth = baseUnitSize >> getComponentScaleX(chromaArea.compID, nChromaFormat);
const int unitHeight = baseUnitSize >> getComponentScaleX(chromaArea.compID, nChromaFormat);
const int tuWidthInUnits = tuWidth / unitWidth;
const int tuHeightInUnits = tuHeight / unitHeight;
const int aboveUnits = tuWidthInUnits;
const int leftUnits = tuHeightInUnits;
#if JVET_L0338_MDLM
int topTemplateSampNum = 2 * cWidth; // for MDLM, the template sample number is 2W or 2H;
int leftTemplateSampNum = 2 * cHeight;
assert(m_topRefLength >= topTemplateSampNum);
assert(m_leftRefLength >= leftTemplateSampNum);
int totalAboveUnits = (topTemplateSampNum + (unitWidth - 1)) / unitWidth;
int totalLeftUnits = (leftTemplateSampNum + (unitHeight - 1)) / unitHeight;
int totalUnits = totalLeftUnits + totalAboveUnits + 1;
int aboveRightUnits = totalAboveUnits - aboveUnits;
int leftBelowUnits = totalLeftUnits - leftUnits;
int avaiAboveRightUnits = 0;
int avaiLeftBelowUnits = 0;
int avaiAboveUnits = 0;
int avaiLeftUnits = 0;
int curChromaMode = pu.intraDir[1];
#endif
bool neighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
#if JVET_L0338_MDLM
memset(neighborFlags, 0, totalUnits);
#else
memset(neighborFlags, 0, 1 + leftUnits + aboveUnits);
#endif
bool aboveAvailable, leftAvailable;
int availableUnit =
isAboveAvailable(cu, CHANNEL_TYPE_CHROMA, posLT, aboveUnits, unitWidth,
#if JVET_L0338_MDLM
(neighborFlags + leftUnits + leftBelowUnits + 1));
#else
(neighborFlags + leftUnits + 1));
#endif
aboveAvailable = availableUnit == tuWidthInUnits;
availableUnit =
isLeftAvailable(cu, CHANNEL_TYPE_CHROMA, posLT, leftUnits, unitHeight,
#if JVET_L0338_MDLM
(neighborFlags + leftUnits + leftBelowUnits - 1));
#else
(neighborFlags + leftUnits - 1));
#endif
leftAvailable = availableUnit == tuHeightInUnits;
#if JVET_L0338_MDLM
if (leftAvailable) // if left is not available, then the below left is not available
{
avaiLeftUnits = tuHeightInUnits;
avaiLeftBelowUnits = isBelowLeftAvailable(cu, CHANNEL_TYPE_CHROMA, chromaArea.bottomLeftComp(chromaArea.compID), leftBelowUnits, unitHeight, (neighborFlags + leftBelowUnits - 1));
}
if (aboveAvailable) // if above is not available, then the above right is not available.
{
avaiAboveUnits = tuWidthInUnits;
avaiAboveRightUnits = isAboveRightAvailable(cu, CHANNEL_TYPE_CHROMA, chromaArea.topRightComp(chromaArea.compID), aboveRightUnits, unitWidth, (neighborFlags + leftUnits + leftBelowUnits + aboveUnits + 1));
}
#endif
Pel *srcColor0, *curChroma0;
int srcStride, curStride;
PelBuf temp;
#if JVET_L0338_MDLM
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
srcStride = 2 * MAX_CU_SIZE + 1;
temp = PelBuf(m_pMdlmTemp + srcStride + 1, srcStride, Size(chromaArea));
}
else
{
#endif
srcStride = MAX_CU_SIZE + 1;
temp = PelBuf(m_piTemp + srcStride + 1, srcStride, Size(chromaArea));
#if JVET_L0338_MDLM
}
#endif
srcColor0 = temp.bufAt(0, 0);
curChroma0 = getPredictorPtr(compID);
curStride = m_topRefLength + 1;
curChroma0 += curStride + 1;
unsigned internalBitDepth = sps.getBitDepth(CHANNEL_TYPE_CHROMA);
int minLuma[2] = { MAX_INT, 0 };
int maxLuma[2] = { -MAX_INT, 0 };
Pel *src = srcColor0 - srcStride;
Pel *cur = curChroma0 - curStride;
#if JVET_L0338_MDLM
int minDim = 1;
int actualTopTemplateSampNum = 0;
int actualLeftTemplateSampNum = 0;
if (curChromaMode == MDLM_T_IDX)
{
leftAvailable = 0;
actualTopTemplateSampNum = unitWidth*(avaiAboveUnits + avaiAboveRightUnits);
minDim = actualTopTemplateSampNum;
}
else if (curChromaMode == MDLM_L_IDX)
{
aboveAvailable = 0;
actualLeftTemplateSampNum = unitHeight*(avaiLeftUnits + avaiLeftBelowUnits);
minDim = actualLeftTemplateSampNum;
}
else if (curChromaMode == LM_CHROMA_IDX)
{
actualTopTemplateSampNum = cWidth;
actualLeftTemplateSampNum = cHeight;
minDim = leftAvailable && aboveAvailable ? 1 << g_aucPrevLog2[std::min(actualLeftTemplateSampNum, actualTopTemplateSampNum)]
: 1 << g_aucPrevLog2[leftAvailable ? actualLeftTemplateSampNum : actualTopTemplateSampNum];
}
#endif
#if !JVET_L0338_MDLM
int minDim = leftAvailable && aboveAvailable ? 1 << g_aucPrevLog2[std::min(cHeight, cWidth)]
: 1 << g_aucPrevLog2[leftAvailable ? cHeight : cWidth];
#endif
int numSteps = minDim;
if (aboveAvailable)
{
for (int j = 0; j < numSteps; j++)
{
#if JVET_L0338_MDLM
int idx = (j * actualTopTemplateSampNum) / minDim;
#else
int idx = (j * cWidth) / minDim;
#endif
if (minLuma[0] > src[idx])
{
minLuma[0] = src[idx];
minLuma[1] = cur[idx];
}
if (maxLuma[0] < src[idx])
{
maxLuma[0] = src[idx];
maxLuma[1] = cur[idx];
}
}
}
if (leftAvailable)
{
src = srcColor0 - 1;
cur = curChroma0 - 1;
for (int i = 0; i < numSteps; i++)
{
#if JVET_L0338_MDLM
int idx = (i * actualLeftTemplateSampNum) / minDim;
#else
int idx = (i * cHeight) / minDim;
#endif
if (minLuma[0] > src[srcStride * idx])
{
minLuma[0] = src[srcStride * idx];
minLuma[1] = cur[curStride * idx];
}
if (maxLuma[0] < src[srcStride * idx])
{
maxLuma[0] = src[srcStride * idx];
maxLuma[1] = cur[curStride * idx];
}
}
}
if ((leftAvailable || aboveAvailable))
{
a = 0;
iShift = 16;
int shift = (internalBitDepth > 8) ? internalBitDepth - 9 : 0;
int add = shift ? 1 << (shift - 1) : 0;
int diff = (maxLuma[0] - minLuma[0] + add) >> shift;
if (diff > 0)
{
int div = ((maxLuma[1] - minLuma[1]) * g_aiLMDivTableLow[diff - 1] + 32768) >> 16;
a = (((maxLuma[1] - minLuma[1]) * g_aiLMDivTableHigh[diff - 1] + div + add) >> shift);
}
b = minLuma[1] - ((a * minLuma[0]) >> iShift);
}
else
{
a = 0;
b = 1 << (internalBitDepth - 1);
iShift = 0;
}
}
#else
static int GetFloorLog2( unsigned x )
{
int bits = -1;
while( x > 0 )
{
bits++;
x >>= 1;
}
return bits;
}
void IntraPrediction::xGetLMParameters(const PredictionUnit &pu, const ComponentID compID, const CompArea& chromaArea,
int& a, int& b, int& iShift)
{
CHECK( compID == COMPONENT_Y, "" );
const SizeType uiCWidth = chromaArea.width;
const SizeType uiCHeight = chromaArea.height;
const Position posLT = chromaArea;
CodingStructure& cs = *(pu.cs);
const CodingUnit& cu = *(pu.cu);
const SPS &sps = *cs.sps;
const uint32_t uiTuWidth = chromaArea.width;
const uint32_t uiTuHeight = chromaArea.height;
const ChromaFormat nChromaFormat = sps.getChromaFormatIdc();
const int iBaseUnitSize = 1 << MIN_CU_LOG2;
const int iUnitWidth = iBaseUnitSize >> getComponentScaleX( chromaArea.compID, nChromaFormat );
const int iUnitHeight = iBaseUnitSize >> getComponentScaleX( chromaArea.compID, nChromaFormat );
const int iTUWidthInUnits = uiTuWidth / iUnitWidth;
const int iTUHeightInUnits = uiTuHeight / iUnitHeight;
const int iAboveUnits = iTUWidthInUnits;
const int iLeftUnits = iTUHeightInUnits;
#if JVET_L0338_MDLM
int topTemplateSampNum = 2 * uiCWidth; // for MDLM, the template sample number is 2W or 2H;
int leftTemplateSampNum = 2 * uiCHeight;
assert(m_topRefLength >= topTemplateSampNum);
assert(m_leftRefLength >= leftTemplateSampNum);
int totalAboveUnits = (topTemplateSampNum + (iUnitWidth - 1)) / iUnitWidth;
int totalLeftUnits = (leftTemplateSampNum + (iUnitHeight - 1)) / iUnitHeight;
int totalUnits = totalLeftUnits + totalAboveUnits + 1;
int aboveRightUnits = totalAboveUnits - iAboveUnits;
int leftBelowUnits = totalLeftUnits - iLeftUnits;
int avaiAboveRightUnits = 0;
int avaiLeftBelowUnits = 0;
int avaiAboveUnits = 0;
int avaiLeftUnits = 0;
int curChromaMode = pu.intraDir[1];
#endif
bool bNeighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
#if JVET_L0338_MDLM
memset(bNeighborFlags, 0, totalUnits);
#else
memset( bNeighborFlags, 0, 1 + iLeftUnits + iAboveUnits );
#endif
bool bAboveAvaillable, bLeftAvaillable;
int availlableUnit = isAboveAvailable( cu, CHANNEL_TYPE_CHROMA, posLT, iAboveUnits, iUnitWidth,
#if JVET_L0338_MDLM
(bNeighborFlags + iLeftUnits + leftBelowUnits + 1 ) );
#else
( bNeighborFlags + iLeftUnits + 1 ) );
#endif
bAboveAvaillable = availlableUnit == iTUWidthInUnits;
availlableUnit = isLeftAvailable( cu, CHANNEL_TYPE_CHROMA, posLT, iLeftUnits, iUnitHeight,
#if JVET_L0338_MDLM
(bNeighborFlags + iLeftUnits + leftBelowUnits - 1 ) );
#else
( bNeighborFlags + iLeftUnits - 1 ) );
#endif
bLeftAvaillable = availlableUnit == iTUHeightInUnits;
#if JVET_L0338_MDLM
if (bLeftAvaillable) // if left is not available, then the below left is not available
{
avaiLeftUnits = iTUHeightInUnits;
avaiLeftBelowUnits = isBelowLeftAvailable(cu, CHANNEL_TYPE_CHROMA, chromaArea.bottomLeftComp(chromaArea.compID), leftBelowUnits, iUnitHeight, (bNeighborFlags + leftBelowUnits - 1));
}
if (bAboveAvaillable) // if above is not available, then the above right is not available.
{
avaiAboveUnits = iTUWidthInUnits;
avaiAboveRightUnits = isAboveRightAvailable(cu, CHANNEL_TYPE_CHROMA, chromaArea.topRightComp(chromaArea.compID), aboveRightUnits, iUnitWidth, (bNeighborFlags + iLeftUnits + leftBelowUnits + iAboveUnits + 1));
}
#endif
Pel *pSrcColor0, *pCurChroma0;
int iSrcStride, iCurStride;
PelBuf Temp;
#if JVET_L0338_MDLM
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
iSrcStride = 2 * MAX_CU_SIZE + 1;
Temp = PelBuf(m_pMdlmTemp + iSrcStride + 1, iSrcStride, Size(chromaArea));
}
else
{
#endif
iSrcStride = MAX_CU_SIZE + 1;
Temp = PelBuf(m_piTemp + iSrcStride + 1, iSrcStride, Size(chromaArea));
#if JVET_L0338_MDLM
}
#endif
pSrcColor0 = Temp.bufAt(0, 0);
pCurChroma0 = getPredictorPtr(compID);
iCurStride = m_topRefLength + 1;
pCurChroma0 += iCurStride + 1;
int x = 0, y = 0, xx = 0, xy = 0;
int iCountShift = 0;
unsigned uiInternalBitDepth = sps.getBitDepth( CHANNEL_TYPE_CHROMA );
Pel *pSrc = pSrcColor0 - iSrcStride;
Pel *pCur = pCurChroma0 - iCurStride;
#if JVET_L0338_MDLM
//get the temp buffer to store the downsampled luma and chroma
Pel* pTempBufferSrc = new Pel[2 * MAX_CU_SIZE]; // for MDLM, use tempalte size 2W or 2H,
Pel* pTempBufferCur = new Pel[2 * MAX_CU_SIZE];
int actualTopTemplateSampNum = iUnitWidth*(avaiAboveUnits + avaiAboveRightUnits);
int actualLeftTemplateSampNum = iUnitHeight*(avaiLeftUnits + avaiLeftBelowUnits);
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
if (curChromaMode == MDLM_T_IDX)
{
if (bAboveAvaillable)
{
for (int j = 0; j < actualTopTemplateSampNum; j++)
{
pTempBufferSrc[j] = pSrc[j];
pTempBufferCur[j] = pCur[j];
}
}
}
else
{
if (bLeftAvaillable)
{
pSrc = pSrcColor0 - 1;
pCur = pCurChroma0 - 1;
for (int i = 0; i < actualLeftTemplateSampNum; i++)
{
pTempBufferSrc[i] = pSrc[iSrcStride *i];
pTempBufferCur[i] = pCur[iCurStride *i];
}
}
}
//pad the temple sample to targetSampNum.
int orgNumSample = (curChromaMode == MDLM_T_IDX) ? (avaiAboveUnits*iUnitWidth) : (avaiLeftUnits*iUnitHeight);
int existSampNum = (curChromaMode == MDLM_T_IDX) ? actualTopTemplateSampNum : actualLeftTemplateSampNum;
int targetSampNum = 1 << (g_aucLog2[existSampNum - 1] + 1);
if (orgNumSample == 0)
{
delete[] pTempBufferSrc;
delete[] pTempBufferCur;
pTempBufferSrc = nullptr;
pTempBufferCur = nullptr;
a = 0;
b = 1 << (uiInternalBitDepth - 1);
iShift = 0;
return;
}
if (targetSampNum != existSampNum)//if existSampNum not a value of power of 2
{
xPadMdlmTemplateSample(pTempBufferSrc, pTempBufferCur, uiCWidth, uiCHeight, existSampNum, targetSampNum);
}
for (int j = 0; j < targetSampNum; j++)
{
x += pTempBufferSrc[j];
y += pTempBufferCur[j];
xx += pTempBufferSrc[j] * pTempBufferSrc[j];
xy += pTempBufferSrc[j] * pTempBufferCur[j];
}
iCountShift = g_aucLog2[targetSampNum];
}
else
{
#endif
int minDim = bLeftAvaillable && bAboveAvaillable ? 1 << g_aucPrevLog2[std::min( uiCHeight, uiCWidth )] : 1 << g_aucPrevLog2[bLeftAvaillable ? uiCHeight : uiCWidth];
int minStep = 1;
int numSteps = cs.pcv->rectCUs ? minDim / minStep : minDim;
if( bAboveAvaillable )
{
for( int j = 0; j < numSteps; j++ )
{
int idx = ( j * minStep * uiCWidth ) / minDim;
x += pSrc[idx];
y += pCur[idx];
xx += pSrc[idx] * pSrc[idx];
xy += pSrc[idx] * pCur[idx];
}
iCountShift = g_aucLog2[minDim / minStep];
}
if( bLeftAvaillable )
{
pSrc = pSrcColor0 - 1;
pCur = pCurChroma0 - 1;
for( int i = 0; i < numSteps; i++ )
{
int idx = ( i * uiCHeight * minStep ) / minDim;
x += pSrc[iSrcStride * idx];
y += pCur[iCurStride * idx];
xx += pSrc[iSrcStride * idx] * pSrc[iSrcStride * idx];
xy += pSrc[iSrcStride * idx] * pCur[iCurStride * idx];
}
iCountShift += bAboveAvaillable ? 1 : g_aucLog2[minDim / minStep];
}
#if JVET_L0338_MDLM
}
delete[] pTempBufferSrc;
delete[] pTempBufferCur;
pTempBufferSrc = nullptr;
pTempBufferCur = nullptr;
#endif
#if JVET_L0338_MDLM
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
if ((curChromaMode == MDLM_L_IDX) ? (!bLeftAvaillable) : (!bAboveAvaillable))
{
a = 0;
b = 1 << (uiInternalBitDepth - 1);
iShift = 0;
return;
}
}
else
{
#endif
if( !bLeftAvaillable && !bAboveAvaillable )
{
a = 0;
b = 1 << ( uiInternalBitDepth - 1 );
iShift = 0;
return;
}
#if JVET_L0338_MDLM
}
#endif
int iTempShift = uiInternalBitDepth + iCountShift - 15;
if( iTempShift > 0 )
{
x = ( x + ( 1 << ( iTempShift - 1 ) ) ) >> iTempShift;
y = ( y + ( 1 << ( iTempShift - 1 ) ) ) >> iTempShift;
xx = ( xx + ( 1 << ( iTempShift - 1 ) ) ) >> iTempShift;
xy = ( xy + ( 1 << ( iTempShift - 1 ) ) ) >> iTempShift;
iCountShift -= iTempShift;
}
/////// xCalcLMParameters
int avgX = x >> iCountShift;
int avgY = y >> iCountShift;
int RErrX = x & ( ( 1 << iCountShift ) - 1 );
int RErrY = y & ( ( 1 << iCountShift ) - 1 );
int iB = 7;
iShift = 13 - iB;
if( iCountShift == 0 )
{
a = 0;
b = 1 << ( uiInternalBitDepth - 1 );
iShift = 0;
}
else
{
int a1 = xy - ( avgX * avgY << iCountShift ) - avgX * RErrY - avgY * RErrX;
int a2 = xx - ( avgX * avgX << iCountShift ) - 2 * avgX * RErrX;
const int iShiftA1 = uiInternalBitDepth - 2;
const int iShiftA2 = 5;
const int iAccuracyShift = uiInternalBitDepth + 4;
int iScaleShiftA2 = 0;
int iScaleShiftA1 = 0;
int a1s = a1;
int a2s = a2;
iScaleShiftA1 = a1 == 0 ? 0 : GetFloorLog2( abs( a1 ) ) - iShiftA1;
iScaleShiftA2 = a2 == 0 ? 0 : GetFloorLog2( abs( a2 ) ) - iShiftA2;
if( iScaleShiftA1 < 0 )
{
iScaleShiftA1 = 0;
}
if( iScaleShiftA2 < 0 )
{
iScaleShiftA2 = 0;
}
int iScaleShiftA = iScaleShiftA2 + iAccuracyShift - iShift - iScaleShiftA1;
a2s = a2 >> iScaleShiftA2;
a1s = a1 >> iScaleShiftA1;
if( a2s >= 32 )
{
uint32_t a2t = m_auShiftLM[a2s - 32];
a = a1s * a2t;
}
else
{
a = 0;
}
if( iScaleShiftA < 0 )
{
a = a << -iScaleShiftA;
}
else
{
a = a >> iScaleShiftA;
}
a = Clip3( -( 1 << ( 15 - iB ) ), ( 1 << ( 15 - iB ) ) - 1, a );
a = a << iB;
int16_t n = 0;
if( a != 0 )
{
n = GetFloorLog2( abs( a ) + ( ( a < 0 ? -1 : 1 ) - 1 ) / 2 ) - 5;
}
iShift = ( iShift + iB ) - n;
a = a >> n;
b = avgY - ( ( a * avgX ) >> iShift );
}
}
#endif
//! \}