Forked from
jvet / VVCSoftware_VTM
7975 commits behind the upstream repository.
-
Frank Bossen authored
commit b6dc7a27e7ad4e7092048c42d42b4cbeaa7b820c Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Thu Nov 1 04:12:44 2018 +0100 Update EncSlice.cpp commit cd48a172780d97d34321a04fc34a490875963f4b Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Wed Oct 31 17:34:09 2018 +0100 Update UnitTools.cpp commit 302b8376ac309f0933dacda05396b7f2a6215960 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:15:29 2018 +0100 Update VLCWriter.cpp commit 57f9db29ef7ddaaf4c6d1a5e93c30b64f53c8b57 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:14:58 2018 +0100 Update EncSlice.cpp commit f5a1228257a4c801486ef6e05b7eadf045082a4f Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:14:29 2018 +0100 Update EncLib.cpp commit e896521f4e136d0f445cbb5bf099a5c834638294 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:11:45 2018 +0100 Update EncCu.cpp commit 5cc65b9961b854c0d6b56d87c7b8836deed4f449 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:11:12 2018 +0100 Update CABACWriter.cpp commit 73a06370556b6d75d2f28aba85bd16673c3c0824 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:10:34 2018 +0100 Update EncCu.h commit f48f7bdd41907bd02bc7d9988050e3cdce479d39 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:09:54 2018 +0100 Update EncCfg.h commit 95aacd519dece1f430ca6ba13a14ba7440298d96 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:08:58 2018 +0100 Update EncAppCfg.cpp commit a113fb3461b96a9d02b52953909302457bbf2130 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:08:11 2018 +0100 Update EncApp.cpp commit a4b988779611a7c5390c21d5f406b226ae9ca7db Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:07:42 2018 +0100 Update EncAppCfg.h commit 6860930bbf4a38437790f66a136413b1f41ab8c9 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:06:56 2018 +0100 Update VLCReader.cpp commit 4e2726b0dd9a0002c662f1547b2418b6c55be493 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:06:14 2018 +0100 Update UnitTools.cpp commit 6f08ee7fd76fee41f30ff0f796df249fd072d5f9 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:05:24 2018 +0100 Update Slice.cpp commit ad97fd292506773d8ca0d5f652c5dc58394e0138 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:04:19 2018 +0100 Update InterPrediction.cpp commit fe00146678fc247f5844556fb94fc07722bcce5a Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:03:33 2018 +0100 Update TypeDef.h commit 5b7e05a0b3b26d3f99d0ee251849a835fca988cb Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:02:32 2018 +0100 Update Slice.h commit ad1303b63b8fd19e4fa2e50c12195976135dbbd5 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 17:59:43 2018 +0100 Update CommonDef.h commit b3b4949ca7f30b1821b736a4b1ed22ace5473232 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 16:54:48 2018 +0100 Update InterPrediction.cpp commit 66638421cb24a4a4e701307d5a2f897b2f81316b Merge: e72c694 25e9c3a Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:03:03 2018 +0800 Merge branch 'L0198_L0468_L0104_ATMVP_SIMP' of https://vcgit.hhi.fraunhofer.de/XZheng/VVCSoftware_VTM into L0198_L0468_L0104_ATMVP_SIMP commit e72c694e51301e915ecbc1afaba0237b2466330f Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 17:46:41 2018 +0800 Change macro name "JVET_L0198_ATMVP_8x8SUB_BLOCK" to "JVET_L0198_L0458_L0104_ATMVP_8x8SUB_BLOCK" and modify the committed codes followed by software guideline. commit 25beb4b25913ad09d31001d1337878b2db3da7ba Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 00:37:06 2018 +0800 Fix ATMVP subblock size to 8x8 and simplify ATMVP neighbouring block scan. Integration of L0198, L0468 and L0104. commit 25e9c3a950ecb23edbc2bd4822238c27335b10cd Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 00:37:06 2018 +0800 Fix ATMVP subblock size to 8x8 and simplify ATMVP neighbouring block scan. Integration of L0198, L0468 and L0104.
Frank Bossen authoredcommit b6dc7a27e7ad4e7092048c42d42b4cbeaa7b820c Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Thu Nov 1 04:12:44 2018 +0100 Update EncSlice.cpp commit cd48a172780d97d34321a04fc34a490875963f4b Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Wed Oct 31 17:34:09 2018 +0100 Update UnitTools.cpp commit 302b8376ac309f0933dacda05396b7f2a6215960 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:15:29 2018 +0100 Update VLCWriter.cpp commit 57f9db29ef7ddaaf4c6d1a5e93c30b64f53c8b57 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:14:58 2018 +0100 Update EncSlice.cpp commit f5a1228257a4c801486ef6e05b7eadf045082a4f Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:14:29 2018 +0100 Update EncLib.cpp commit e896521f4e136d0f445cbb5bf099a5c834638294 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:11:45 2018 +0100 Update EncCu.cpp commit 5cc65b9961b854c0d6b56d87c7b8836deed4f449 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:11:12 2018 +0100 Update CABACWriter.cpp commit 73a06370556b6d75d2f28aba85bd16673c3c0824 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:10:34 2018 +0100 Update EncCu.h commit f48f7bdd41907bd02bc7d9988050e3cdce479d39 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:09:54 2018 +0100 Update EncCfg.h commit 95aacd519dece1f430ca6ba13a14ba7440298d96 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:08:58 2018 +0100 Update EncAppCfg.cpp commit a113fb3461b96a9d02b52953909302457bbf2130 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:08:11 2018 +0100 Update EncApp.cpp commit a4b988779611a7c5390c21d5f406b226ae9ca7db Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:07:42 2018 +0100 Update EncAppCfg.h commit 6860930bbf4a38437790f66a136413b1f41ab8c9 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:06:56 2018 +0100 Update VLCReader.cpp commit 4e2726b0dd9a0002c662f1547b2418b6c55be493 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:06:14 2018 +0100 Update UnitTools.cpp commit 6f08ee7fd76fee41f30ff0f796df249fd072d5f9 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:05:24 2018 +0100 Update Slice.cpp commit ad97fd292506773d8ca0d5f652c5dc58394e0138 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:04:19 2018 +0100 Update InterPrediction.cpp commit fe00146678fc247f5844556fb94fc07722bcce5a Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:03:33 2018 +0100 Update TypeDef.h commit 5b7e05a0b3b26d3f99d0ee251849a835fca988cb Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:02:32 2018 +0100 Update Slice.h commit ad1303b63b8fd19e4fa2e50c12195976135dbbd5 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 17:59:43 2018 +0100 Update CommonDef.h commit b3b4949ca7f30b1821b736a4b1ed22ace5473232 Author: Xiaozhen Zheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 16:54:48 2018 +0100 Update InterPrediction.cpp commit 66638421cb24a4a4e701307d5a2f897b2f81316b Merge: e72c694 25e9c3a Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 18:03:03 2018 +0800 Merge branch 'L0198_L0468_L0104_ATMVP_SIMP' of https://vcgit.hhi.fraunhofer.de/XZheng/VVCSoftware_VTM into L0198_L0468_L0104_ATMVP_SIMP commit e72c694e51301e915ecbc1afaba0237b2466330f Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 17:46:41 2018 +0800 Change macro name "JVET_L0198_ATMVP_8x8SUB_BLOCK" to "JVET_L0198_L0458_L0104_ATMVP_8x8SUB_BLOCK" and modify the committed codes followed by software guideline. commit 25beb4b25913ad09d31001d1337878b2db3da7ba Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 00:37:06 2018 +0800 Fix ATMVP subblock size to 8x8 and simplify ATMVP neighbouring block scan. Integration of L0198, L0468 and L0104. commit 25e9c3a950ecb23edbc2bd4822238c27335b10cd Author: xzheng <xiaozhen.zheng@dji.com> Date: Tue Oct 30 00:37:06 2018 +0800 Fix ATMVP subblock size to 8x8 and simplify ATMVP neighbouring block scan. Integration of L0198, L0468 and L0104.
VLCWriter.cpp 78.44 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file VLCWriter.cpp
* \brief Writer for high level syntax
*/
#include "VLCWriter.h"
#include "SEIwrite.h"
#include "CommonLib/CommonDef.h"
#include "CommonLib/Unit.h"
#include "CommonLib/Picture.h" // th remove this
#include "CommonLib/dtrace_next.h"
#include "EncAdaptiveLoopFilter.h"
#include "CommonLib/AdaptiveLoopFilter.h"
//! \ingroup EncoderLib
//! \{
#if ENABLE_TRACING
void VLCWriter::xWriteCodeTr (uint32_t value, uint32_t length, const char *pSymbolName)
{
xWriteCode (value,length);
if( g_HLSTraceEnable )
{
if( length < 10 )
{
DTRACE( g_trace_ctx, D_HEADER, "%-50s u(%d) : %d\n", pSymbolName, length, value );
}
else
{
DTRACE( g_trace_ctx, D_HEADER, "%-50s u(%d) : %d\n", pSymbolName, length, value );
}
}
}
void VLCWriter::xWriteUvlcTr (uint32_t value, const char *pSymbolName)
{
xWriteUvlc (value);
if( g_HLSTraceEnable )
{
DTRACE( g_trace_ctx, D_HEADER, "%-50s ue(v) : %d\n", pSymbolName, value );
}
}
void VLCWriter::xWriteSvlcTr (int value, const char *pSymbolName)
{
xWriteSvlc(value);
if( g_HLSTraceEnable )
{
DTRACE( g_trace_ctx, D_HEADER, "%-50s se(v) : %d\n", pSymbolName, value );
}
}
void VLCWriter::xWriteFlagTr(uint32_t value, const char *pSymbolName)
{
xWriteFlag(value);
if( g_HLSTraceEnable )
{
DTRACE( g_trace_ctx, D_HEADER, "%-50s u(1) : %d\n", pSymbolName, value );
}
}
bool g_HLSTraceEnable = true;
#endif
void VLCWriter::xWriteCode ( uint32_t uiCode, uint32_t uiLength )
{
CHECK( uiLength == 0, "Code of lenght '0' not supported" );
m_pcBitIf->write( uiCode, uiLength );
}
void VLCWriter::xWriteUvlc ( uint32_t uiCode )
{
uint32_t uiLength = 1;
uint32_t uiTemp = ++uiCode;
CHECK( !uiTemp, "Integer overflow" );
while( 1 != uiTemp )
{
uiTemp >>= 1;
uiLength += 2;
}
// Take care of cases where uiLength > 32
m_pcBitIf->write( 0, uiLength >> 1);
m_pcBitIf->write( uiCode, (uiLength+1) >> 1);
}
void VLCWriter::xWriteSvlc ( int iCode )
{
uint32_t uiCode = uint32_t( iCode <= 0 ? (-iCode)<<1 : (iCode<<1)-1);
xWriteUvlc( uiCode );
}
void VLCWriter::xWriteFlag( uint32_t uiCode )
{
m_pcBitIf->write( uiCode, 1 );
}
void VLCWriter::xWriteRbspTrailingBits()
{
WRITE_FLAG( 1, "rbsp_stop_one_bit");
int cnt = 0;
while (m_pcBitIf->getNumBitsUntilByteAligned())
{
WRITE_FLAG( 0, "rbsp_alignment_zero_bit");
cnt++;
}
CHECK(cnt>=8, "More than '8' alignment bytes read");
}
void AUDWriter::codeAUD(OutputBitstream& bs, const int pictureType)
{
#if ENABLE_TRACING
xTraceAccessUnitDelimiter();
#endif
CHECK(pictureType >= 3, "Invalid picture type");
setBitstream(&bs);
WRITE_CODE(pictureType, 3, "pic_type");
xWriteRbspTrailingBits();
}
void HLSWriter::xCodeShortTermRefPicSet( const ReferencePictureSet* rps, bool calledFromSliceHeader, int idx)
{
//int lastBits = getNumberOfWrittenBits();
if (idx > 0)
{
WRITE_FLAG( rps->getInterRPSPrediction(), "inter_ref_pic_set_prediction_flag" ); // inter_RPS_prediction_flag
}
if (rps->getInterRPSPrediction())
{
int deltaRPS = rps->getDeltaRPS();
if(calledFromSliceHeader)
{
WRITE_UVLC( rps->getDeltaRIdxMinus1(), "delta_idx_minus1" ); // delta index of the Reference Picture Set used for prediction minus 1
}
WRITE_CODE( (deltaRPS >=0 ? 0: 1), 1, "delta_rps_sign" ); //delta_rps_sign
WRITE_UVLC( abs(deltaRPS) - 1, "abs_delta_rps_minus1"); // absolute delta RPS minus 1
for(int j=0; j < rps->getNumRefIdc(); j++)
{
int refIdc = rps->getRefIdc(j);
WRITE_CODE( (refIdc==1? 1: 0), 1, "used_by_curr_pic_flag" ); //first bit is "1" if Idc is 1
if (refIdc != 1)
{
WRITE_CODE( refIdc>>1, 1, "use_delta_flag" ); //second bit is "1" if Idc is 2, "0" otherwise.
}
}
}
else
{
WRITE_UVLC( rps->getNumberOfNegativePictures(), "num_negative_pics" );
WRITE_UVLC( rps->getNumberOfPositivePictures(), "num_positive_pics" );
int prev = 0;
for(int j=0 ; j < rps->getNumberOfNegativePictures(); j++)
{
WRITE_UVLC( prev-rps->getDeltaPOC(j)-1, "delta_poc_s0_minus1" );
prev = rps->getDeltaPOC(j);
WRITE_FLAG( rps->getUsed(j), "used_by_curr_pic_s0_flag");
}
prev = 0;
for(int j=rps->getNumberOfNegativePictures(); j < rps->getNumberOfNegativePictures()+rps->getNumberOfPositivePictures(); j++)
{
WRITE_UVLC( rps->getDeltaPOC(j)-prev-1, "delta_poc_s1_minus1" );
prev = rps->getDeltaPOC(j);
WRITE_FLAG( rps->getUsed(j), "used_by_curr_pic_s1_flag" );
}
}
//DTRACE( g_trace_ctx, D_RPSINFO, "irps=%d (%2d bits) ", rps->getInterRPSPrediction(), getNumberOfWrittenBits() - lastBits );
rps->printDeltaPOC();
}
void HLSWriter::codePPS( const PPS* pcPPS )
{
#if ENABLE_TRACING
xTracePPSHeader ();
#endif
WRITE_UVLC( pcPPS->getPPSId(), "pps_pic_parameter_set_id" );
WRITE_UVLC( pcPPS->getSPSId(), "pps_seq_parameter_set_id" );
#if HEVC_DEPENDENT_SLICES
WRITE_FLAG( pcPPS->getDependentSliceSegmentsEnabledFlag() ? 1 : 0, "dependent_slice_segments_enabled_flag" );
#endif
WRITE_FLAG( pcPPS->getOutputFlagPresentFlag() ? 1 : 0, "output_flag_present_flag" );
WRITE_CODE( pcPPS->getNumExtraSliceHeaderBits(), 3, "num_extra_slice_header_bits");
WRITE_FLAG( pcPPS->getCabacInitPresentFlag() ? 1 : 0, "cabac_init_present_flag" );
WRITE_UVLC( pcPPS->getNumRefIdxL0DefaultActive()-1, "num_ref_idx_l0_default_active_minus1");
WRITE_UVLC( pcPPS->getNumRefIdxL1DefaultActive()-1, "num_ref_idx_l1_default_active_minus1");
WRITE_SVLC( pcPPS->getPicInitQPMinus26(), "init_qp_minus26");
WRITE_FLAG( pcPPS->getConstrainedIntraPred() ? 1 : 0, "constrained_intra_pred_flag" );
WRITE_FLAG( pcPPS->getUseTransformSkip() ? 1 : 0, "transform_skip_enabled_flag" );
WRITE_FLAG( pcPPS->getUseDQP() ? 1 : 0, "cu_qp_delta_enabled_flag" );
if ( pcPPS->getUseDQP() )
{
WRITE_UVLC( pcPPS->getMaxCuDQPDepth(), "diff_cu_qp_delta_depth" );
}
WRITE_SVLC( pcPPS->getQpOffset(COMPONENT_Cb), "pps_cb_qp_offset" );
WRITE_SVLC( pcPPS->getQpOffset(COMPONENT_Cr), "pps_cr_qp_offset" );
WRITE_FLAG( pcPPS->getSliceChromaQpFlag() ? 1 : 0, "pps_slice_chroma_qp_offsets_present_flag" );
WRITE_FLAG( pcPPS->getUseWP() ? 1 : 0, "weighted_pred_flag" ); // Use of Weighting Prediction (P_SLICE)
WRITE_FLAG( pcPPS->getWPBiPred() ? 1 : 0, "weighted_bipred_flag" ); // Use of Weighting Bi-Prediction (B_SLICE)
WRITE_FLAG( pcPPS->getTransquantBypassEnabledFlag() ? 1 : 0, "transquant_bypass_enabled_flag" );
#if HEVC_TILES_WPP
WRITE_FLAG( pcPPS->getTilesEnabledFlag() ? 1 : 0, "tiles_enabled_flag" );
WRITE_FLAG( pcPPS->getEntropyCodingSyncEnabledFlag() ? 1 : 0, "entropy_coding_sync_enabled_flag" );
if( pcPPS->getTilesEnabledFlag() )
{
WRITE_UVLC( pcPPS->getNumTileColumnsMinus1(), "num_tile_columns_minus1" );
WRITE_UVLC( pcPPS->getNumTileRowsMinus1(), "num_tile_rows_minus1" );
WRITE_FLAG( pcPPS->getTileUniformSpacingFlag(), "uniform_spacing_flag" );
if( !pcPPS->getTileUniformSpacingFlag() )
{
for(uint32_t i=0; i<pcPPS->getNumTileColumnsMinus1(); i++)
{
WRITE_UVLC( pcPPS->getTileColumnWidth(i)-1, "column_width_minus1" );
}
for(uint32_t i=0; i<pcPPS->getNumTileRowsMinus1(); i++)
{
WRITE_UVLC( pcPPS->getTileRowHeight(i)-1, "row_height_minus1" );
}
}
CHECK ((pcPPS->getNumTileColumnsMinus1() + pcPPS->getNumTileRowsMinus1()) == 0, "Invalid tile parameters read");
WRITE_FLAG( pcPPS->getLoopFilterAcrossTilesEnabledFlag()?1 : 0, "loop_filter_across_tiles_enabled_flag");
}
#endif
WRITE_FLAG( pcPPS->getLoopFilterAcrossSlicesEnabledFlag()?1 : 0, "pps_loop_filter_across_slices_enabled_flag");
WRITE_FLAG( pcPPS->getDeblockingFilterControlPresentFlag()?1 : 0, "deblocking_filter_control_present_flag");
if(pcPPS->getDeblockingFilterControlPresentFlag())
{
WRITE_FLAG( pcPPS->getDeblockingFilterOverrideEnabledFlag() ? 1 : 0, "deblocking_filter_override_enabled_flag" );
WRITE_FLAG( pcPPS->getPPSDeblockingFilterDisabledFlag() ? 1 : 0, "pps_deblocking_filter_disabled_flag" );
if(!pcPPS->getPPSDeblockingFilterDisabledFlag())
{
WRITE_SVLC( pcPPS->getDeblockingFilterBetaOffsetDiv2(), "pps_beta_offset_div2" );
WRITE_SVLC( pcPPS->getDeblockingFilterTcOffsetDiv2(), "pps_tc_offset_div2" );
}
}
#if HEVC_USE_SCALING_LISTS
WRITE_FLAG( pcPPS->getScalingListPresentFlag() ? 1 : 0, "pps_scaling_list_data_present_flag" );
if( pcPPS->getScalingListPresentFlag() )
{
codeScalingList( pcPPS->getScalingList() );
}
#endif
WRITE_FLAG( pcPPS->getListsModificationPresentFlag(), "lists_modification_present_flag");
WRITE_UVLC( pcPPS->getLog2ParallelMergeLevelMinus2(), "log2_parallel_merge_level_minus2");
WRITE_FLAG( pcPPS->getSliceHeaderExtensionPresentFlag() ? 1 : 0, "slice_segment_header_extension_present_flag");
bool pps_extension_present_flag=false;
bool pps_extension_flags[NUM_PPS_EXTENSION_FLAGS]={false};
pps_extension_flags[PPS_EXT__REXT] = pcPPS->getPpsRangeExtension().settingsDifferFromDefaults(pcPPS->getUseTransformSkip());
// Other PPS extension flags checked here.
for(int i=0; i<NUM_PPS_EXTENSION_FLAGS; i++)
{
pps_extension_present_flag|=pps_extension_flags[i];
}
WRITE_FLAG( (pps_extension_present_flag?1:0), "pps_extension_present_flag" );
if (pps_extension_present_flag)
{
#if ENABLE_TRACING /*|| RExt__DECODER_DEBUG_BIT_STATISTICS*/
static const char *syntaxStrings[]={ "pps_range_extension_flag",
"pps_multilayer_extension_flag",
"pps_extension_6bits[0]",
"pps_extension_6bits[1]",
"pps_extension_6bits[2]",
"pps_extension_6bits[3]",
"pps_extension_6bits[4]",
"pps_extension_6bits[5]" };
#endif
for(int i=0; i<NUM_PPS_EXTENSION_FLAGS; i++)
{
WRITE_FLAG( pps_extension_flags[i]?1:0, syntaxStrings[i] );
}
for(int i=0; i<NUM_PPS_EXTENSION_FLAGS; i++) // loop used so that the order is determined by the enum.
{
if (pps_extension_flags[i])
{
switch (PPSExtensionFlagIndex(i))
{
case PPS_EXT__REXT:
{
const PPSRExt &ppsRangeExtension = pcPPS->getPpsRangeExtension();
if (pcPPS->getUseTransformSkip())
{
WRITE_UVLC( ppsRangeExtension.getLog2MaxTransformSkipBlockSize()-2, "log2_max_transform_skip_block_size_minus2");
}
WRITE_FLAG((ppsRangeExtension.getCrossComponentPredictionEnabledFlag() ? 1 : 0), "cross_component_prediction_enabled_flag" );
WRITE_FLAG(uint32_t(ppsRangeExtension.getChromaQpOffsetListEnabledFlag()), "chroma_qp_offset_list_enabled_flag" );
if (ppsRangeExtension.getChromaQpOffsetListEnabledFlag())
{
WRITE_UVLC(ppsRangeExtension.getDiffCuChromaQpOffsetDepth(), "diff_cu_chroma_qp_offset_depth");
WRITE_UVLC(ppsRangeExtension.getChromaQpOffsetListLen() - 1, "chroma_qp_offset_list_len_minus1");
/* skip zero index */
for (int cuChromaQpOffsetIdx = 0; cuChromaQpOffsetIdx < ppsRangeExtension.getChromaQpOffsetListLen(); cuChromaQpOffsetIdx++)
{
WRITE_SVLC(ppsRangeExtension.getChromaQpOffsetListEntry(cuChromaQpOffsetIdx+1).u.comp.CbOffset, "cb_qp_offset_list[i]");
WRITE_SVLC(ppsRangeExtension.getChromaQpOffsetListEntry(cuChromaQpOffsetIdx+1).u.comp.CrOffset, "cr_qp_offset_list[i]");
}
}
WRITE_UVLC( ppsRangeExtension.getLog2SaoOffsetScale(CHANNEL_TYPE_LUMA), "log2_sao_offset_scale_luma" );
WRITE_UVLC( ppsRangeExtension.getLog2SaoOffsetScale(CHANNEL_TYPE_CHROMA), "log2_sao_offset_scale_chroma" );
}
break;
default:
CHECK(pps_extension_flags[i]==false, "Unknown PPS extension signalled"); // Should never get here with an active PPS extension flag.
break;
} // switch
} // if flag present
} // loop over PPS flags
} // pps_extension_present_flag is non-zero
xWriteRbspTrailingBits();
}
void HLSWriter::codeVUI( const VUI *pcVUI, const SPS* pcSPS )
{
#if ENABLE_TRACING
DTRACE( g_trace_ctx, D_HEADER, "----------- vui_parameters -----------\n");
#endif
WRITE_FLAG(pcVUI->getAspectRatioInfoPresentFlag(), "aspect_ratio_info_present_flag");
if (pcVUI->getAspectRatioInfoPresentFlag())
{
WRITE_CODE(pcVUI->getAspectRatioIdc(), 8, "aspect_ratio_idc" );
if (pcVUI->getAspectRatioIdc() == 255)
{
WRITE_CODE(pcVUI->getSarWidth(), 16, "sar_width");
WRITE_CODE(pcVUI->getSarHeight(), 16, "sar_height");
}
}
WRITE_FLAG(pcVUI->getOverscanInfoPresentFlag(), "overscan_info_present_flag");
if (pcVUI->getOverscanInfoPresentFlag())
{
WRITE_FLAG(pcVUI->getOverscanAppropriateFlag(), "overscan_appropriate_flag");
}
WRITE_FLAG(pcVUI->getVideoSignalTypePresentFlag(), "video_signal_type_present_flag");
if (pcVUI->getVideoSignalTypePresentFlag())
{
WRITE_CODE(pcVUI->getVideoFormat(), 3, "video_format");
WRITE_FLAG(pcVUI->getVideoFullRangeFlag(), "video_full_range_flag");
WRITE_FLAG(pcVUI->getColourDescriptionPresentFlag(), "colour_description_present_flag");
if (pcVUI->getColourDescriptionPresentFlag())
{
WRITE_CODE(pcVUI->getColourPrimaries(), 8, "colour_primaries");
WRITE_CODE(pcVUI->getTransferCharacteristics(), 8, "transfer_characteristics");
WRITE_CODE(pcVUI->getMatrixCoefficients(), 8, "matrix_coeffs");
}
}
WRITE_FLAG(pcVUI->getChromaLocInfoPresentFlag(), "chroma_loc_info_present_flag");
if (pcVUI->getChromaLocInfoPresentFlag())
{
WRITE_UVLC(pcVUI->getChromaSampleLocTypeTopField(), "chroma_sample_loc_type_top_field");
WRITE_UVLC(pcVUI->getChromaSampleLocTypeBottomField(), "chroma_sample_loc_type_bottom_field");
}
WRITE_FLAG(pcVUI->getNeutralChromaIndicationFlag(), "neutral_chroma_indication_flag");
WRITE_FLAG(pcVUI->getFieldSeqFlag(), "field_seq_flag");
WRITE_FLAG(pcVUI->getFrameFieldInfoPresentFlag(), "frame_field_info_present_flag");
Window defaultDisplayWindow = pcVUI->getDefaultDisplayWindow();
WRITE_FLAG(defaultDisplayWindow.getWindowEnabledFlag(), "default_display_window_flag");
if( defaultDisplayWindow.getWindowEnabledFlag() )
{
WRITE_UVLC(defaultDisplayWindow.getWindowLeftOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc()), "def_disp_win_left_offset");
WRITE_UVLC(defaultDisplayWindow.getWindowRightOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc()), "def_disp_win_right_offset");
WRITE_UVLC(defaultDisplayWindow.getWindowTopOffset() / SPS::getWinUnitY(pcSPS->getChromaFormatIdc()), "def_disp_win_top_offset");
WRITE_UVLC(defaultDisplayWindow.getWindowBottomOffset()/ SPS::getWinUnitY(pcSPS->getChromaFormatIdc()), "def_disp_win_bottom_offset");
}
const TimingInfo *timingInfo = pcVUI->getTimingInfo();
WRITE_FLAG(timingInfo->getTimingInfoPresentFlag(), "vui_timing_info_present_flag");
if(timingInfo->getTimingInfoPresentFlag())
{
WRITE_CODE(timingInfo->getNumUnitsInTick(), 32, "vui_num_units_in_tick");
WRITE_CODE(timingInfo->getTimeScale(), 32, "vui_time_scale");
WRITE_FLAG(timingInfo->getPocProportionalToTimingFlag(), "vui_poc_proportional_to_timing_flag");
if(timingInfo->getPocProportionalToTimingFlag())
{
WRITE_UVLC(timingInfo->getNumTicksPocDiffOneMinus1(), "vui_num_ticks_poc_diff_one_minus1");
}
WRITE_FLAG(pcVUI->getHrdParametersPresentFlag(), "vui_hrd_parameters_present_flag");
if( pcVUI->getHrdParametersPresentFlag() )
{
codeHrdParameters(pcVUI->getHrdParameters(), 1, pcSPS->getMaxTLayers() - 1 );
}
}
WRITE_FLAG(pcVUI->getBitstreamRestrictionFlag(), "bitstream_restriction_flag");
if (pcVUI->getBitstreamRestrictionFlag())
{
#if HEVC_TILES_WPP
WRITE_FLAG(pcVUI->getTilesFixedStructureFlag(), "tiles_fixed_structure_flag");
#endif
WRITE_FLAG(pcVUI->getMotionVectorsOverPicBoundariesFlag(), "motion_vectors_over_pic_boundaries_flag");
WRITE_FLAG(pcVUI->getRestrictedRefPicListsFlag(), "restricted_ref_pic_lists_flag");
WRITE_UVLC(pcVUI->getMinSpatialSegmentationIdc(), "min_spatial_segmentation_idc");
WRITE_UVLC(pcVUI->getMaxBytesPerPicDenom(), "max_bytes_per_pic_denom");
WRITE_UVLC(pcVUI->getMaxBitsPerMinCuDenom(), "max_bits_per_min_cu_denom");
WRITE_UVLC(pcVUI->getLog2MaxMvLengthHorizontal(), "log2_max_mv_length_horizontal");
WRITE_UVLC(pcVUI->getLog2MaxMvLengthVertical(), "log2_max_mv_length_vertical");
}
}
void HLSWriter::codeHrdParameters( const HRD *hrd, bool commonInfPresentFlag, uint32_t maxNumSubLayersMinus1 )
{
if( commonInfPresentFlag )
{
WRITE_FLAG( hrd->getNalHrdParametersPresentFlag() ? 1 : 0 , "nal_hrd_parameters_present_flag" );
WRITE_FLAG( hrd->getVclHrdParametersPresentFlag() ? 1 : 0 , "vcl_hrd_parameters_present_flag" );
if( hrd->getNalHrdParametersPresentFlag() || hrd->getVclHrdParametersPresentFlag() )
{
WRITE_FLAG( hrd->getSubPicCpbParamsPresentFlag() ? 1 : 0, "sub_pic_hrd_params_present_flag" );
if( hrd->getSubPicCpbParamsPresentFlag() )
{
WRITE_CODE( hrd->getTickDivisorMinus2(), 8, "tick_divisor_minus2" );
WRITE_CODE( hrd->getDuCpbRemovalDelayLengthMinus1(), 5, "du_cpb_removal_delay_increment_length_minus1" );
WRITE_FLAG( hrd->getSubPicCpbParamsInPicTimingSEIFlag() ? 1 : 0, "sub_pic_cpb_params_in_pic_timing_sei_flag" );
WRITE_CODE( hrd->getDpbOutputDelayDuLengthMinus1(), 5, "dpb_output_delay_du_length_minus1" );
}
WRITE_CODE( hrd->getBitRateScale(), 4, "bit_rate_scale" );
WRITE_CODE( hrd->getCpbSizeScale(), 4, "cpb_size_scale" );
if( hrd->getSubPicCpbParamsPresentFlag() )
{
WRITE_CODE( hrd->getDuCpbSizeScale(), 4, "du_cpb_size_scale" );
}
WRITE_CODE( hrd->getInitialCpbRemovalDelayLengthMinus1(), 5, "initial_cpb_removal_delay_length_minus1" );
WRITE_CODE( hrd->getCpbRemovalDelayLengthMinus1(), 5, "au_cpb_removal_delay_length_minus1" );
WRITE_CODE( hrd->getDpbOutputDelayLengthMinus1(), 5, "dpb_output_delay_length_minus1" );
}
}
int i, j, nalOrVcl;
for( i = 0; i <= maxNumSubLayersMinus1; i ++ )
{
WRITE_FLAG( hrd->getFixedPicRateFlag( i ) ? 1 : 0, "fixed_pic_rate_general_flag");
bool fixedPixRateWithinCvsFlag = true;
if( !hrd->getFixedPicRateFlag( i ) )
{
fixedPixRateWithinCvsFlag = hrd->getFixedPicRateWithinCvsFlag( i );
WRITE_FLAG( hrd->getFixedPicRateWithinCvsFlag( i ) ? 1 : 0, "fixed_pic_rate_within_cvs_flag");
}
if( fixedPixRateWithinCvsFlag )
{
WRITE_UVLC( hrd->getPicDurationInTcMinus1( i ), "elemental_duration_in_tc_minus1");
}
else
{
WRITE_FLAG( hrd->getLowDelayHrdFlag( i ) ? 1 : 0, "low_delay_hrd_flag");
}
if (!hrd->getLowDelayHrdFlag( i ))
{
WRITE_UVLC( hrd->getCpbCntMinus1( i ), "cpb_cnt_minus1");
}
for( nalOrVcl = 0; nalOrVcl < 2; nalOrVcl ++ )
{
if( ( ( nalOrVcl == 0 ) && ( hrd->getNalHrdParametersPresentFlag() ) ) ||
( ( nalOrVcl == 1 ) && ( hrd->getVclHrdParametersPresentFlag() ) ) )
{
for( j = 0; j <= ( hrd->getCpbCntMinus1( i ) ); j ++ )
{
WRITE_UVLC( hrd->getBitRateValueMinus1( i, j, nalOrVcl ), "bit_rate_value_minus1");
WRITE_UVLC( hrd->getCpbSizeValueMinus1( i, j, nalOrVcl ), "cpb_size_value_minus1");
if( hrd->getSubPicCpbParamsPresentFlag() )
{
WRITE_UVLC( hrd->getDuCpbSizeValueMinus1( i, j, nalOrVcl ), "cpb_size_du_value_minus1");
WRITE_UVLC( hrd->getDuBitRateValueMinus1( i, j, nalOrVcl ), "bit_rate_du_value_minus1");
}
WRITE_FLAG( hrd->getCbrFlag( i, j, nalOrVcl ) ? 1 : 0, "cbr_flag");
}
}
}
}
}
void HLSWriter::codeSPSNext( const SPSNext& spsNext, const bool usePCM )
{
// tool enabling flags
WRITE_FLAG( spsNext.getUseQTBT() ? 1 : 0, "qtbt_flag" );
WRITE_FLAG( spsNext.getUseLargeCTU() ? 1 : 0, "large_ctu_flag" );
WRITE_FLAG(spsNext.getUseSubPuMvp() ? 1 : 0, "subpu_tmvp_flag");
WRITE_FLAG( spsNext.getUseIMV() ? 1 : 0, "imv_enable_flag" );
#if !REMOVE_MV_ADAPT_PREC
WRITE_FLAG( spsNext.getUseHighPrecMv() ? 1 : 0, "high_precision_motion_vectors");
#endif
#if JVET_L0256_BIO
WRITE_FLAG( spsNext.getUseBIO() ? 1 : 0, "bio_enable_flag" );
#endif
WRITE_FLAG( spsNext.getDisableMotCompress() ? 1 : 0, "disable_motion_compression_flag" );
WRITE_FLAG( spsNext.getUseLMChroma() ? 1 : 0, "lm_chroma_enabled_flag" );
WRITE_FLAG( spsNext.getUseIntraEMT() ? 1 : 0, "emt_intra_enabled_flag" );
WRITE_FLAG( spsNext.getUseInterEMT() ? 1 : 0, "emt_inter_enabled_flag" );
WRITE_FLAG( spsNext.getUseAffine() ? 1 : 0, "affine_flag" );
if ( spsNext.getUseAffine() )
{
WRITE_FLAG( spsNext.getUseAffineType() ? 1 : 0, "affine_type_flag" );
}
#if JVET_L0646_GBI
WRITE_FLAG( spsNext.getUseGBi() ? 1 : 0, "gbi_flag" );
#endif
for( int k = 0; k < SPSNext::NumReservedFlags; k++ )
{
WRITE_FLAG( 0, "reserved_flag" );
}
WRITE_FLAG( spsNext.getMTTEnabled() ? 1 : 0, "mtt_enabled_flag" );
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
WRITE_FLAG( spsNext.getUseMHIntra() ? 1 : 0, "mhintra_flag" );
#endif
#if ENABLE_WPP_PARALLELISM
WRITE_FLAG( spsNext.getUseNextDQP(), "next_dqp_enabled_flag" );
#else
WRITE_FLAG( 0, "reserved_flag" );
#endif
// additional parameters
if( spsNext.getUseQTBT() )
{
WRITE_FLAG( spsNext.getUseDualITree(), "qtbt_dual_intra_tree" );
WRITE_UVLC( g_aucLog2[spsNext.getCTUSize()] - MIN_CU_LOG2, "log2_CTU_size_minus2" );
#if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT
WRITE_FLAG (spsNext.getSplitConsOverrideEnabledFlag(), "sps_override_partition_constraints_enable_flag");
WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize(I_SLICE)] - spsNext.getSPS().getLog2MinCodingBlockSize(), "sps_log2_diff_min_qt_min_cb_intra_slice");
WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize(B_SLICE)] - spsNext.getSPS().getLog2MinCodingBlockSize(), "sps_log2_diff_min_qt_min_cb_inter_slice");
WRITE_UVLC( spsNext.getMaxBTDepth(), "sps_max_mtt_hierarchy_depth_inter_slices");
WRITE_UVLC( spsNext.getMaxBTDepthI(), "sps_max_mtt_hierarchy_depth_intra_slices");
if (spsNext.getMaxBTDepthI() != 0)
{
WRITE_UVLC(g_aucLog2[spsNext.getMaxBTSizeI()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE)], "sps_log2_diff_max_bt_min_qt_intra_slice");
WRITE_UVLC(g_aucLog2[spsNext.getMaxTTSizeI()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE)], "sps_log2_diff_max_tt_min_qt_intra_slice");
}
if (spsNext.getMaxBTDepth() != 0)
{
WRITE_UVLC(g_aucLog2[spsNext.getMaxBTSize()] - g_aucLog2[spsNext.getMinQTSize(B_SLICE)], "sps_log2_diff_max_bt_min_qt_inter_slice");
WRITE_UVLC(g_aucLog2[spsNext.getMaxTTSize()] - g_aucLog2[spsNext.getMinQTSize(B_SLICE)], "sps_log2_diff_max_tt_min_qt_inter_slice");
}
#else
WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( I_SLICE ) ] - MIN_CU_LOG2, "log2_minQT_ISlice_minus2" );
WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( B_SLICE ) ] - MIN_CU_LOG2, "log2_minQT_PBSlice_minus2" );
WRITE_UVLC( spsNext.getMaxBTDepth(), "max_bt_depth" );
WRITE_UVLC( spsNext.getMaxBTDepthI(), "max_bt_depth_i_slice" );
#endif
if( spsNext.getUseDualITree() )
{
#if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT
WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( I_SLICE, CHANNEL_TYPE_CHROMA )] - spsNext.getSPS().getLog2MinCodingBlockSize(), "sps_log2_diff_min_qt_min_cb_intra_slice_chroma");
WRITE_UVLC( spsNext.getMaxBTDepthIChroma(), "sps_max_mtt_hierarchy_depth_intra_slices_chroma");
if (spsNext.getMaxBTDepthIChroma() != 0)
{
WRITE_UVLC(g_aucLog2[spsNext.getMaxBTSizeIChroma()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA)], "sps_log2_diff_max_bt_min_qt_intra_slice_chroma");
WRITE_UVLC(g_aucLog2[spsNext.getMaxTTSizeIChroma()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA)], "sps_log2_diff_max_tt_min_qt_intra_slice_chroma");
}
#else
WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( I_SLICE, CHANNEL_TYPE_CHROMA )] - MIN_CU_LOG2, "log2_minQT_ISliceChroma_minus2" );
WRITE_UVLC( spsNext.getMaxBTDepthIChroma(), "max_bt_depth_i_slice_chroma" );
#endif
}
}
#if !JVET_L0198_L0468_L0104_ATMVP_8x8SUB_BLOCK
if( spsNext.getUseSubPuMvp() )
{
WRITE_CODE( spsNext.getSubPuMvpLog2Size() - MIN_CU_LOG2, 3, "log2_sub_pu_tmvp_size_minus2" );
}
#endif
if( spsNext.getUseIMV() )
{
WRITE_UVLC( spsNext.getImvMode()-1, "imv_mode_minus1" );
}
if( spsNext.getMTTEnabled() )
{
WRITE_UVLC( spsNext.getMTTMode() - 1, "mtt_mode_minus1" );
}
#if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET
WRITE_FLAG( spsNext.getLadfEnabled() ? 1 : 0, "sps_ladf_enabled_flag" );
if ( spsNext.getLadfEnabled() )
{
WRITE_CODE( spsNext.getLadfNumIntervals() - 2, 2, "sps_num_ladf_intervals_minus2" );
WRITE_SVLC( spsNext.getLadfQpOffset( 0 ), "sps_ladf_lowest_interval_qp_offset");
for ( int k = 1; k< spsNext.getLadfNumIntervals(); k++ )
{
WRITE_SVLC( spsNext.getLadfQpOffset( k ), "sps_ladf_qp_offset" );
WRITE_UVLC( spsNext.getLadfIntervalLowerBound( k ) - spsNext.getLadfIntervalLowerBound( k - 1 ) - 1, "sps_ladf_delta_threshold_minus1" );
}
}
#endif
// ADD_NEW_TOOL : (sps extension writer) write tool enabling flags and associated parameters here
}
void HLSWriter::codeSPS( const SPS* pcSPS )
{
const ChromaFormat format = pcSPS->getChromaFormatIdc();
const bool chromaEnabled = isChromaEnabled(format);
#if ENABLE_TRACING
xTraceSPSHeader ();
#endif
#if HEVC_VPS
WRITE_CODE( pcSPS->getVPSId (), 4, "sps_video_parameter_set_id" );
#endif
WRITE_CODE( pcSPS->getMaxTLayers() - 1, 3, "sps_max_sub_layers_minus1" );
WRITE_FLAG( pcSPS->getTemporalIdNestingFlag() ? 1 : 0, "sps_temporal_id_nesting_flag" );
codePTL( pcSPS->getPTL(), true, pcSPS->getMaxTLayers() - 1 );
WRITE_UVLC( pcSPS->getSPSId (), "sps_seq_parameter_set_id" );
WRITE_UVLC( int(pcSPS->getChromaFormatIdc ()), "chroma_format_idc" );
if( format == CHROMA_444 )
{
WRITE_FLAG( 0, "separate_colour_plane_flag");
}
WRITE_UVLC( pcSPS->getPicWidthInLumaSamples (), "pic_width_in_luma_samples" );
WRITE_UVLC( pcSPS->getPicHeightInLumaSamples(), "pic_height_in_luma_samples" );
Window conf = pcSPS->getConformanceWindow();
WRITE_FLAG( conf.getWindowEnabledFlag(), "conformance_window_flag" );
if (conf.getWindowEnabledFlag())
{
WRITE_UVLC( conf.getWindowLeftOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc() ), "conf_win_left_offset" );
WRITE_UVLC( conf.getWindowRightOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc() ), "conf_win_right_offset" );
WRITE_UVLC( conf.getWindowTopOffset() / SPS::getWinUnitY(pcSPS->getChromaFormatIdc() ), "conf_win_top_offset" );
WRITE_UVLC( conf.getWindowBottomOffset() / SPS::getWinUnitY(pcSPS->getChromaFormatIdc() ), "conf_win_bottom_offset" );
}
WRITE_UVLC( pcSPS->getBitDepth(CHANNEL_TYPE_LUMA) - 8, "bit_depth_luma_minus8" );
WRITE_UVLC( chromaEnabled ? (pcSPS->getBitDepth(CHANNEL_TYPE_CHROMA) - 8):0, "bit_depth_chroma_minus8" );
WRITE_UVLC( pcSPS->getBitsForPOC()-4, "log2_max_pic_order_cnt_lsb_minus4" );
const bool subLayerOrderingInfoPresentFlag = 1;
WRITE_FLAG(subLayerOrderingInfoPresentFlag, "sps_sub_layer_ordering_info_present_flag");
for(uint32_t i=0; i <= pcSPS->getMaxTLayers()-1; i++)
{
WRITE_UVLC( pcSPS->getMaxDecPicBuffering(i) - 1, "sps_max_dec_pic_buffering_minus1[i]" );
WRITE_UVLC( pcSPS->getNumReorderPics(i), "sps_max_num_reorder_pics[i]" );
WRITE_UVLC( pcSPS->getMaxLatencyIncreasePlus1(i), "sps_max_latency_increase_plus1[i]" );
if (!subLayerOrderingInfoPresentFlag)
{
break;
}
}
CHECK( pcSPS->getMaxCUWidth() != pcSPS->getMaxCUHeight(), "Rectangular CTUs not supported" );
#if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT
WRITE_UVLC( pcSPS->getLog2MinCodingBlockSize() - 2, "log2_min_luma_coding_block_size_minus2");
#else
WRITE_UVLC( pcSPS->getLog2MinCodingBlockSize() - 3, "log2_min_luma_coding_block_size_minus3" );
#endif
WRITE_UVLC( pcSPS->getLog2DiffMaxMinCodingBlockSize(), "log2_diff_max_min_luma_coding_block_size" );
WRITE_UVLC( pcSPS->getQuadtreeTULog2MinSize() - 2, "log2_min_luma_transform_block_size_minus2" );
WRITE_UVLC( pcSPS->getQuadtreeTULog2MaxSize() - pcSPS->getQuadtreeTULog2MinSize(), "log2_diff_max_min_luma_transform_block_size" );
WRITE_UVLC( pcSPS->getQuadtreeTUMaxDepthInter() - 1, "max_transform_hierarchy_depth_inter" );
WRITE_UVLC( pcSPS->getQuadtreeTUMaxDepthIntra() - 1, "max_transform_hierarchy_depth_intra" );
WRITE_FLAG( pcSPS->getUseALF(), "sps_alf_enable_flag" );
#if HEVC_USE_SCALING_LISTS
WRITE_FLAG( pcSPS->getScalingListFlag() ? 1 : 0, "scaling_list_enabled_flag" );
if(pcSPS->getScalingListFlag())
{
WRITE_FLAG( pcSPS->getScalingListPresentFlag() ? 1 : 0, "sps_scaling_list_data_present_flag" );
if(pcSPS->getScalingListPresentFlag())
{
codeScalingList( pcSPS->getScalingList() );
}
}
#endif
WRITE_FLAG( pcSPS->getUseAMP() ? 1 : 0, "amp_enabled_flag" );
WRITE_FLAG( pcSPS->getUseSAO() ? 1 : 0, "sample_adaptive_offset_enabled_flag");
WRITE_FLAG( pcSPS->getUsePCM() ? 1 : 0, "pcm_enabled_flag");
if( pcSPS->getUsePCM() )
{
WRITE_CODE( pcSPS->getPCMBitDepth(CHANNEL_TYPE_LUMA) - 1, 4, "pcm_sample_bit_depth_luma_minus1" );
WRITE_CODE( chromaEnabled ? (pcSPS->getPCMBitDepth(CHANNEL_TYPE_CHROMA) - 1) : 0, 4, "pcm_sample_bit_depth_chroma_minus1" );
WRITE_UVLC( pcSPS->getPCMLog2MinSize() - 3, "log2_min_pcm_luma_coding_block_size_minus3" );
WRITE_UVLC( pcSPS->getPCMLog2MaxSize() - pcSPS->getPCMLog2MinSize(), "log2_diff_max_min_pcm_luma_coding_block_size" );
WRITE_FLAG( pcSPS->getPCMFilterDisableFlag()?1 : 0, "pcm_loop_filter_disable_flag");
}
CHECK( pcSPS->getMaxTLayers() == 0, "Maximum number of T-layers is '0'" );
const RPSList* rpsList = pcSPS->getRPSList();
WRITE_UVLC(rpsList->getNumberOfReferencePictureSets(), "num_short_term_ref_pic_sets" );
for(int i=0; i < rpsList->getNumberOfReferencePictureSets(); i++)
{
const ReferencePictureSet*rps = rpsList->getReferencePictureSet(i);
xCodeShortTermRefPicSet( rps,false, i);
}
WRITE_FLAG( pcSPS->getLongTermRefsPresent() ? 1 : 0, "long_term_ref_pics_present_flag" );
if (pcSPS->getLongTermRefsPresent())
{
WRITE_UVLC(pcSPS->getNumLongTermRefPicSPS(), "num_long_term_ref_pics_sps" );
for (uint32_t k = 0; k < pcSPS->getNumLongTermRefPicSPS(); k++)
{
WRITE_CODE( pcSPS->getLtRefPicPocLsbSps(k), pcSPS->getBitsForPOC(), "lt_ref_pic_poc_lsb_sps");
WRITE_FLAG( pcSPS->getUsedByCurrPicLtSPSFlag(k), "used_by_curr_pic_lt_sps_flag[i]");
}
}
WRITE_FLAG( pcSPS->getSPSTemporalMVPEnabledFlag() ? 1 : 0, "sps_temporal_mvp_enabled_flag" );
#if HEVC_USE_INTRA_SMOOTHING_T32 || HEVC_USE_INTRA_SMOOTHING_T64
WRITE_FLAG( pcSPS->getUseStrongIntraSmoothing(), "strong_intra_smoothing_enable_flag" );
#endif
WRITE_FLAG( pcSPS->getVuiParametersPresentFlag(), "vui_parameters_present_flag" );
if (pcSPS->getVuiParametersPresentFlag())
{
codeVUI(pcSPS->getVuiParameters(), pcSPS);
}
// KTA tools
bool sps_extension_present_flag=false;
bool sps_extension_flags[NUM_SPS_EXTENSION_FLAGS]={false};
sps_extension_flags[SPS_EXT__REXT] = pcSPS->getSpsRangeExtension().settingsDifferFromDefaults();
sps_extension_flags[SPS_EXT__NEXT] = pcSPS->getSpsNext().nextToolsEnabled();
// Other SPS extension flags checked here.
for(int i=0; i<NUM_SPS_EXTENSION_FLAGS; i++)
{
sps_extension_present_flag|=sps_extension_flags[i];
}
WRITE_FLAG( (sps_extension_present_flag?1:0), "sps_extension_present_flag" );
if (sps_extension_present_flag)
{
#if ENABLE_TRACING /*|| RExt__DECODER_DEBUG_BIT_STATISTICS*/
static const char *syntaxStrings[]={ "sps_range_extension_flag",
"sps_multilayer_extension_flag",
"sps_extension_6bits[0]",
"sps_extension_6bits[1]",
"sps_extension_6bits[2]",
"sps_extension_6bits[3]",
"sps_extension_6bits[4]",
"sps_extension_6bits[5]" };
#endif
for(int i=0; i<NUM_SPS_EXTENSION_FLAGS; i++)
{
WRITE_FLAG( sps_extension_flags[i]?1:0, syntaxStrings[i] );
}
for(int i=0; i<NUM_SPS_EXTENSION_FLAGS; i++) // loop used so that the order is determined by the enum.
{
if (sps_extension_flags[i])
{
switch (SPSExtensionFlagIndex(i))
{
case SPS_EXT__REXT:
{
const SPSRExt &spsRangeExtension=pcSPS->getSpsRangeExtension();
WRITE_FLAG( (spsRangeExtension.getTransformSkipRotationEnabledFlag() ? 1 : 0), "transform_skip_rotation_enabled_flag");
WRITE_FLAG( (spsRangeExtension.getTransformSkipContextEnabledFlag() ? 1 : 0), "transform_skip_context_enabled_flag");
WRITE_FLAG( (spsRangeExtension.getRdpcmEnabledFlag(RDPCM_SIGNAL_IMPLICIT) ? 1 : 0), "implicit_rdpcm_enabled_flag" );
WRITE_FLAG( (spsRangeExtension.getRdpcmEnabledFlag(RDPCM_SIGNAL_EXPLICIT) ? 1 : 0), "explicit_rdpcm_enabled_flag" );
WRITE_FLAG( (spsRangeExtension.getExtendedPrecisionProcessingFlag() ? 1 : 0), "extended_precision_processing_flag" );
WRITE_FLAG( (spsRangeExtension.getIntraSmoothingDisabledFlag() ? 1 : 0), "intra_smoothing_disabled_flag" );
WRITE_FLAG( (spsRangeExtension.getHighPrecisionOffsetsEnabledFlag() ? 1 : 0), "high_precision_offsets_enabled_flag" );
WRITE_FLAG( (spsRangeExtension.getPersistentRiceAdaptationEnabledFlag() ? 1 : 0), "persistent_rice_adaptation_enabled_flag" );
WRITE_FLAG( (spsRangeExtension.getCabacBypassAlignmentEnabledFlag() ? 1 : 0), "cabac_bypass_alignment_enabled_flag" );
break;
}
case SPS_EXT__NEXT:
{
codeSPSNext( pcSPS->getSpsNext(), pcSPS->getUsePCM() );
break;
}
default:
CHECK(sps_extension_flags[i]!=false, "Unknown PPS extension signalled"); // Should never get here with an active SPS extension flag.
break;
}
}
}
}
xWriteRbspTrailingBits();
}
#if HEVC_VPS
void HLSWriter::codeVPS( const VPS* pcVPS )
{
#if ENABLE_TRACING
xTraceVPSHeader();
#endif
WRITE_CODE( pcVPS->getVPSId(), 4, "vps_video_parameter_set_id" );
WRITE_FLAG( 1, "vps_base_layer_internal_flag" );
WRITE_FLAG( 1, "vps_base_layer_available_flag" );
WRITE_CODE( 0, 6, "vps_max_layers_minus1" );
WRITE_CODE( pcVPS->getMaxTLayers() - 1, 3, "vps_max_sub_layers_minus1" );
WRITE_FLAG( pcVPS->getTemporalNestingFlag(), "vps_temporal_id_nesting_flag" );
CHECK(pcVPS->getMaxTLayers()<=1&&!pcVPS->getTemporalNestingFlag(), "Invalud parameters");
WRITE_CODE( 0xffff, 16, "vps_reserved_0xffff_16bits" );
codePTL( pcVPS->getPTL(), true, pcVPS->getMaxTLayers() - 1 );
const bool subLayerOrderingInfoPresentFlag = 1;
WRITE_FLAG(subLayerOrderingInfoPresentFlag, "vps_sub_layer_ordering_info_present_flag");
for(uint32_t i=0; i <= pcVPS->getMaxTLayers()-1; i++)
{
WRITE_UVLC( pcVPS->getMaxDecPicBuffering(i) - 1, "vps_max_dec_pic_buffering_minus1[i]" );
WRITE_UVLC( pcVPS->getNumReorderPics(i), "vps_max_num_reorder_pics[i]" );
WRITE_UVLC( pcVPS->getMaxLatencyIncrease(i), "vps_max_latency_increase_plus1[i]" );
if (!subLayerOrderingInfoPresentFlag)
{
break;
}
}
CHECK( pcVPS->getNumHrdParameters() > MAX_VPS_NUM_HRD_PARAMETERS, "Too many HRD parameters" );
CHECK( pcVPS->getMaxNuhReservedZeroLayerId() >= MAX_VPS_NUH_RESERVED_ZERO_LAYER_ID_PLUS1, "Invalid parameters read" );
WRITE_CODE( pcVPS->getMaxNuhReservedZeroLayerId(), 6, "vps_max_layer_id" );
WRITE_UVLC( pcVPS->getMaxOpSets() - 1, "vps_num_layer_sets_minus1" );
for( uint32_t opsIdx = 1; opsIdx <= ( pcVPS->getMaxOpSets() - 1 ); opsIdx ++ )
{
// Operation point set
for( uint32_t i = 0; i <= pcVPS->getMaxNuhReservedZeroLayerId(); i ++ )
{
// Only applicable for version 1
// pcVPS->setLayerIdIncludedFlag( true, opsIdx, i );
WRITE_FLAG( pcVPS->getLayerIdIncludedFlag( opsIdx, i ) ? 1 : 0, "layer_id_included_flag[opsIdx][i]" );
}
}
const TimingInfo *timingInfo = pcVPS->getTimingInfo();
WRITE_FLAG(timingInfo->getTimingInfoPresentFlag(), "vps_timing_info_present_flag");
if(timingInfo->getTimingInfoPresentFlag())
{
WRITE_CODE(timingInfo->getNumUnitsInTick(), 32, "vps_num_units_in_tick");
WRITE_CODE(timingInfo->getTimeScale(), 32, "vps_time_scale");
WRITE_FLAG(timingInfo->getPocProportionalToTimingFlag(), "vps_poc_proportional_to_timing_flag");
if(timingInfo->getPocProportionalToTimingFlag())
{
WRITE_UVLC(timingInfo->getNumTicksPocDiffOneMinus1(), "vps_num_ticks_poc_diff_one_minus1");
}
WRITE_UVLC( pcVPS->getNumHrdParameters(), "vps_num_hrd_parameters" );
if( pcVPS->getNumHrdParameters() > 0 )
{
for( uint32_t i = 0; i < pcVPS->getNumHrdParameters(); i ++ )
{
// Only applicable for version 1
WRITE_UVLC( pcVPS->getHrdOpSetIdx( i ), "hrd_layer_set_idx" );
if( i > 0 )
{
WRITE_FLAG( pcVPS->getCprmsPresentFlag( i ) ? 1 : 0, "cprms_present_flag[i]" );
}
codeHrdParameters(pcVPS->getHrdParameters(i), pcVPS->getCprmsPresentFlag( i ), pcVPS->getMaxTLayers() - 1);
}
}
}
WRITE_FLAG( 0, "vps_extension_flag" );
//future extensions here..
xWriteRbspTrailingBits();
}
#endif
void HLSWriter::codeSliceHeader ( Slice* pcSlice )
{
#if ENABLE_TRACING
xTraceSliceHeader ();
#endif
CodingStructure& cs = *pcSlice->getPic()->cs;
const ChromaFormat format = pcSlice->getSPS()->getChromaFormatIdc();
const uint32_t numberValidComponents = getNumberValidComponents(format);
const bool chromaEnabled = isChromaEnabled(format);
//calculate number of bits required for slice address
int maxSliceSegmentAddress = cs.pcv->sizeInCtus;
int bitsSliceSegmentAddress = 0;
while(maxSliceSegmentAddress>(1<<bitsSliceSegmentAddress))
{
bitsSliceSegmentAddress++;
}
#if HEVC_DEPENDENT_SLICES
const int ctuTsAddress = pcSlice->getSliceSegmentCurStartCtuTsAddr();
#else
const int ctuTsAddress = pcSlice->getSliceCurStartCtuTsAddr();
#endif
//write slice address
#if HEVC_TILES_WPP
const int sliceSegmentRsAddress = pcSlice->getPic()->tileMap->getCtuTsToRsAddrMap(ctuTsAddress);
#else
const int sliceSegmentRsAddress = ctuTsAddress;
#endif
WRITE_FLAG( sliceSegmentRsAddress==0, "first_slice_segment_in_pic_flag" );
if ( pcSlice->getRapPicFlag() )
{
WRITE_FLAG( pcSlice->getNoOutputPriorPicsFlag() ? 1 : 0, "no_output_of_prior_pics_flag" );
}
WRITE_UVLC( pcSlice->getPPS()->getPPSId(), "slice_pic_parameter_set_id" );
#if HEVC_DEPENDENT_SLICES
if ( pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag() && (sliceSegmentRsAddress!=0) )
{
WRITE_FLAG( pcSlice->getDependentSliceSegmentFlag() ? 1 : 0, "dependent_slice_segment_flag" );
}
#endif
if(sliceSegmentRsAddress>0)
{
WRITE_CODE( sliceSegmentRsAddress, bitsSliceSegmentAddress, "slice_segment_address" );
}
#if HEVC_DEPENDENT_SLICES
if( !pcSlice->getDependentSliceSegmentFlag() )
{
#endif
for( int i = 0; i < pcSlice->getPPS()->getNumExtraSliceHeaderBits(); i++ )
{
WRITE_FLAG( 0, "slice_reserved_flag[]" );
}
WRITE_UVLC( pcSlice->getSliceType(), "slice_type" );
if( pcSlice->getPPS()->getOutputFlagPresentFlag() )
{
WRITE_FLAG( pcSlice->getPicOutputFlag() ? 1 : 0, "pic_output_flag" );
}
if( !pcSlice->getIdrPicFlag() )
{
int picOrderCntLSB = ( pcSlice->getPOC() - pcSlice->getLastIDR() + ( 1 << pcSlice->getSPS()->getBitsForPOC() ) ) & ( ( 1 << pcSlice->getSPS()->getBitsForPOC() ) - 1 );
WRITE_CODE( picOrderCntLSB, pcSlice->getSPS()->getBitsForPOC(), "slice_pic_order_cnt_lsb" );
const ReferencePictureSet* rps = pcSlice->getRPS();
// check for bitstream restriction stating that:
// If the current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0.
// Ideally this process should not be repeated for each slice in a picture
if( pcSlice->isIRAP() )
{
for( int picIdx = 0; picIdx < rps->getNumberOfPictures(); picIdx++ )
{
CHECK( rps->getUsed( picIdx ), "Picture should not be used" );
}
}
if( pcSlice->getRPSidx() < 0 )
{
WRITE_FLAG( 0, "short_term_ref_pic_set_sps_flag" );
xCodeShortTermRefPicSet( rps, true, pcSlice->getSPS()->getRPSList()->getNumberOfReferencePictureSets() );
}
else
{
WRITE_FLAG( 1, "short_term_ref_pic_set_sps_flag" );
int numBits = 0;
while( ( 1 << numBits ) < pcSlice->getSPS()->getRPSList()->getNumberOfReferencePictureSets() )
{
numBits++;
}
if( numBits > 0 )
{
WRITE_CODE( pcSlice->getRPSidx(), numBits, "short_term_ref_pic_set_idx" );
}
}
if( pcSlice->getSPS()->getLongTermRefsPresent() )
{
int numLtrpInSH = rps->getNumberOfLongtermPictures();
int ltrpInSPS[MAX_NUM_REF_PICS];
int numLtrpInSPS = 0;
uint32_t ltrpIndex;
int counter = 0;
// WARNING: The following code only works only if a matching long-term RPS is
// found in the SPS for ALL long-term pictures
// The problem is that the SPS coded long-term pictures are moved to the
// beginning of the list which causes a mismatch when no reference picture
// list reordering is used
// NB: Long-term coding is currently not supported in general by the HM encoder
for( int k = rps->getNumberOfPictures() - 1; k > rps->getNumberOfPictures() - rps->getNumberOfLongtermPictures() - 1; k-- )
{
if( xFindMatchingLTRP( pcSlice, <rpIndex, rps->getPOC( k ), rps->getUsed( k ) ) )
{
ltrpInSPS[numLtrpInSPS] = ltrpIndex;
numLtrpInSPS++;
}
else
{
counter++;
}
}
numLtrpInSH -= numLtrpInSPS;
// check that either all long-term pictures are coded in SPS or in slice header (no mixing)
CHECK( numLtrpInSH != 0 && numLtrpInSPS != 0, "Long term picture not coded" );
int bitsForLtrpInSPS = 0;
while( pcSlice->getSPS()->getNumLongTermRefPicSPS() > ( 1 << bitsForLtrpInSPS ) )
{
bitsForLtrpInSPS++;
}
if( pcSlice->getSPS()->getNumLongTermRefPicSPS() > 0 )
{
WRITE_UVLC( numLtrpInSPS, "num_long_term_sps" );
}
WRITE_UVLC( numLtrpInSH, "num_long_term_pics" );
// Note that the LSBs of the LT ref. pic. POCs must be sorted before.
// Not sorted here because LT ref indices will be used in setRefPicList()
int prevDeltaMSB = 0, prevLSB = 0;
int offset = rps->getNumberOfNegativePictures() + rps->getNumberOfPositivePictures();
counter = 0;
// Warning: If some pictures are moved to ltrpInSPS, i is referring to a wrong index
// (mapping would be required)
for( int i = rps->getNumberOfPictures() - 1; i > offset - 1; i--, counter++ )
{
if( counter < numLtrpInSPS )
{
if( bitsForLtrpInSPS > 0 )
{
WRITE_CODE( ltrpInSPS[counter], bitsForLtrpInSPS, "lt_idx_sps[i]" );
}
}
else
{
WRITE_CODE( rps->getPocLSBLT( i ), pcSlice->getSPS()->getBitsForPOC(), "poc_lsb_lt" );
WRITE_FLAG( rps->getUsed( i ), "used_by_curr_pic_lt_flag" );
}
WRITE_FLAG( rps->getDeltaPocMSBPresentFlag( i ), "delta_poc_msb_present_flag" );
if( rps->getDeltaPocMSBPresentFlag( i ) )
{
bool deltaFlag = false;
// First LTRP from SPS || First LTRP from SH || curr LSB != prev LSB
if( ( i == rps->getNumberOfPictures() - 1 ) || ( i == rps->getNumberOfPictures() - 1 - numLtrpInSPS ) || ( rps->getPocLSBLT( i ) != prevLSB ) )
{
deltaFlag = true;
}
if( deltaFlag )
{
WRITE_UVLC( rps->getDeltaPocMSBCycleLT( i ), "delta_poc_msb_cycle_lt[i]" );
}
else
{
int differenceInDeltaMSB = rps->getDeltaPocMSBCycleLT( i ) - prevDeltaMSB;
CHECK( differenceInDeltaMSB < 0, "Negative diff. delta MSB" );
WRITE_UVLC( differenceInDeltaMSB, "delta_poc_msb_cycle_lt[i]" );
}
prevLSB = rps->getPocLSBLT( i );
prevDeltaMSB = rps->getDeltaPocMSBCycleLT( i );
}
}
}
if( pcSlice->getSPS()->getSPSTemporalMVPEnabledFlag() )
{
WRITE_FLAG( pcSlice->getEnableTMVPFlag() ? 1 : 0, "slice_temporal_mvp_enabled_flag" );
}
}
if( pcSlice->getSPS()->getUseSAO() )
{
WRITE_FLAG( pcSlice->getSaoEnabledFlag( CHANNEL_TYPE_LUMA ), "slice_sao_luma_flag" );
if( chromaEnabled )
{
WRITE_FLAG( pcSlice->getSaoEnabledFlag( CHANNEL_TYPE_CHROMA ), "slice_sao_chroma_flag" );
}
}
if( pcSlice->getSPS()->getUseALF() )
{
alf( pcSlice->getAlfSliceParam() );
}
//check if numrefidxes match the defaults. If not, override
if( !pcSlice->isIntra() )
{
bool overrideFlag = ( pcSlice->getNumRefIdx( REF_PIC_LIST_0 ) != pcSlice->getPPS()->getNumRefIdxL0DefaultActive() || ( pcSlice->isInterB() && pcSlice->getNumRefIdx( REF_PIC_LIST_1 ) != pcSlice->getPPS()->getNumRefIdxL1DefaultActive() ) );
WRITE_FLAG( overrideFlag ? 1 : 0, "num_ref_idx_active_override_flag" );
if( overrideFlag )
{
WRITE_UVLC( pcSlice->getNumRefIdx( REF_PIC_LIST_0 ) - 1, "num_ref_idx_l0_active_minus1" );
if( pcSlice->isInterB() )
{
WRITE_UVLC( pcSlice->getNumRefIdx( REF_PIC_LIST_1 ) - 1, "num_ref_idx_l1_active_minus1" );
}
else
{
pcSlice->setNumRefIdx( REF_PIC_LIST_1, 0 );
}
}
}
else
{
pcSlice->setNumRefIdx( REF_PIC_LIST_0, 0 );
pcSlice->setNumRefIdx( REF_PIC_LIST_1, 0 );
}
if( pcSlice->getPPS()->getListsModificationPresentFlag() && pcSlice->getNumRpsCurrTempList() > 1 )
{
RefPicListModification* refPicListModification = pcSlice->getRefPicListModification();
if( !pcSlice->isIntra() )
{
WRITE_FLAG( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL0() ? 1 : 0, "ref_pic_list_modification_flag_l0" );
if( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL0() )
{
int numRpsCurrTempList0 = pcSlice->getNumRpsCurrTempList();
if( numRpsCurrTempList0 > 1 )
{
int length = 1;
numRpsCurrTempList0--;
while( numRpsCurrTempList0 >>= 1 )
{
length++;
}
for( int i = 0; i < pcSlice->getNumRefIdx( REF_PIC_LIST_0 ); i++ )
{
WRITE_CODE( refPicListModification->getRefPicSetIdxL0( i ), length, "list_entry_l0" );
}
}
}
}
if( pcSlice->isInterB() )
{
WRITE_FLAG( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL1() ? 1 : 0, "ref_pic_list_modification_flag_l1" );
if( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL1() )
{
int numRpsCurrTempList1 = pcSlice->getNumRpsCurrTempList();
if( numRpsCurrTempList1 > 1 )
{
int length = 1;
numRpsCurrTempList1--;
while( numRpsCurrTempList1 >>= 1 )
{
length++;
}
for( int i = 0; i < pcSlice->getNumRefIdx( REF_PIC_LIST_1 ); i++ )
{
WRITE_CODE( refPicListModification->getRefPicSetIdxL1( i ), length, "list_entry_l1" );
}
}
}
}
}
if( pcSlice->isInterB() )
{
WRITE_FLAG( pcSlice->getMvdL1ZeroFlag() ? 1 : 0, "mvd_l1_zero_flag" );
}
if( !pcSlice->isIntra() )
{
if( !pcSlice->isIntra() && pcSlice->getPPS()->getCabacInitPresentFlag() )
{
SliceType sliceType = pcSlice->getSliceType();
SliceType encCABACTableIdx = pcSlice->getEncCABACTableIdx();
bool encCabacInitFlag = ( sliceType != encCABACTableIdx && encCABACTableIdx != I_SLICE ) ? true : false;
pcSlice->setCabacInitFlag( encCabacInitFlag );
WRITE_FLAG( encCabacInitFlag ? 1 : 0, "cabac_init_flag" );
}
}
if( pcSlice->getEnableTMVPFlag() )
{
if( pcSlice->getSliceType() == B_SLICE )
{
WRITE_FLAG( pcSlice->getColFromL0Flag(), "collocated_from_l0_flag" );
}
if( pcSlice->getSliceType() != I_SLICE &&
( ( pcSlice->getColFromL0Flag() == 1 && pcSlice->getNumRefIdx( REF_PIC_LIST_0 ) > 1 ) ||
( pcSlice->getColFromL0Flag() == 0 && pcSlice->getNumRefIdx( REF_PIC_LIST_1 ) > 1 ) ) )
{
WRITE_UVLC( pcSlice->getColRefIdx(), "collocated_ref_idx" );
}
}
if( ( pcSlice->getPPS()->getUseWP() && pcSlice->getSliceType() == P_SLICE ) || ( pcSlice->getPPS()->getWPBiPred() && pcSlice->getSliceType() == B_SLICE ) )
{
xCodePredWeightTable( pcSlice );
}
WRITE_FLAG( pcSlice->getDepQuantEnabledFlag() ? 1 : 0, "dep_quant_enable_flag" );
#if HEVC_USE_SIGN_HIDING
if( !pcSlice->getDepQuantEnabledFlag() )
{
WRITE_FLAG( pcSlice->getSignDataHidingEnabledFlag() ? 1 : 0, "sign_data_hiding_enable_flag" );
}
else
{
CHECK( pcSlice->getSignDataHidingEnabledFlag(), "sign data hiding not supported when dependent quantization is enabled" );
}
#endif
if( pcSlice->getSPS()->getSpsNext().getUseQTBT() )
{
#if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT
if (pcSlice->getSPS()->getSpsNext().getSplitConsOverrideEnabledFlag())
{
WRITE_FLAG(pcSlice->getSplitConsOverrideFlag() ? 1 : 0, "partition_constrainst_override_flag");
if (pcSlice->getSplitConsOverrideFlag())
{
WRITE_UVLC(g_aucLog2[pcSlice->getMinQTSize()] - pcSlice->getSPS()->getLog2MinCodingBlockSize(), "log2_diff_min_qt_min_cb");
WRITE_UVLC(pcSlice->getMaxBTDepth(), "max_bt_depth");
if (pcSlice->getMaxBTDepth() != 0)
{
CHECK(pcSlice->getMaxBTSize() < pcSlice->getMinQTSize(), "maxBtSize is smaller than minQtSize");
WRITE_UVLC(g_aucLog2[pcSlice->getMaxBTSize()] - g_aucLog2[pcSlice->getMinQTSize()], "log2_diff_max_bt_min_qt");
CHECK(pcSlice->getMaxTTSize() < pcSlice->getMinQTSize(), "maxTtSize is smaller than minQtSize");
WRITE_UVLC(g_aucLog2[pcSlice->getMaxTTSize()] - g_aucLog2[pcSlice->getMinQTSize()], "log2_diff_max_tt_min_qt");
}
if (pcSlice->isIntra() && pcSlice->getSPS()->getSpsNext().getUseDualITree())
{
WRITE_UVLC(g_aucLog2[pcSlice->getMinQTSizeIChroma()] - pcSlice->getSPS()->getLog2MinCodingBlockSize(), "log2_diff_min_qt_min_cb_chroma");
WRITE_UVLC(pcSlice->getMaxBTDepthIChroma(), "max_mtt_hierarchy_depth_chroma");
if (pcSlice->getMaxBTDepthIChroma() != 0)
{
CHECK(pcSlice->getMaxBTSizeIChroma() < pcSlice->getMinQTSizeIChroma(), "maxBtSizeC is smaller than minQtSizeC");
WRITE_UVLC(g_aucLog2[pcSlice->getMaxBTSizeIChroma()] - g_aucLog2[pcSlice->getMinQTSizeIChroma()], "log2_diff_max_bt_min_qt_chroma");
CHECK(pcSlice->getMaxTTSizeIChroma() < pcSlice->getMinQTSizeIChroma(), "maxTtSizeC is smaller than minQtSizeC");
WRITE_UVLC(g_aucLog2[pcSlice->getMaxTTSizeIChroma()] - g_aucLog2[pcSlice->getMinQTSizeIChroma()], "log2_diff_max_tt_min_qt_chroma");
}
}
}
}
#else
if( !pcSlice->isIntra() )
{
if( pcSlice->getSPS()->getSpsNext().getCTUSize() > pcSlice->getMaxBTSize() )
{
WRITE_UVLC( g_aucLog2[pcSlice->getSPS()->getSpsNext().getCTUSize()] - g_aucLog2[pcSlice->getMaxBTSize()], "max_binary_tree_unit_size" );
}
else
{
WRITE_UVLC( 0, "max_binary_tree_unit_size" );
}
}
#endif
}
if( !pcSlice->isIntra() )
{
#if JVET_L0369_SUBBLOCK_MERGE
CHECK( pcSlice->getMaxNumMergeCand() > MRG_MAX_NUM_CANDS, "More merge candidates signalled than supported" );
WRITE_UVLC( MRG_MAX_NUM_CANDS - pcSlice->getMaxNumMergeCand(), "six_minus_max_num_merge_cand" );
#else
CHECK( pcSlice->getMaxNumMergeCand() > ( MRG_MAX_NUM_CANDS - ( pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() ? 0 : 2 ) ), "More merge candidates signalled than supported" );
WRITE_UVLC( MRG_MAX_NUM_CANDS - pcSlice->getMaxNumMergeCand() - ( pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() ? 0 : 2 ), pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() ? "seven_minus_max_num_merge_cand" : "five_minus_max_num_merge_cand" );
#endif
#if JVET_L0632_AFFINE_MERGE
#if JVET_L0369_SUBBLOCK_MERGE
if ( pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() && !pcSlice->getSPS()->getSpsNext().getUseAffine() ) // ATMVP only
{
CHECK( pcSlice->getMaxNumAffineMergeCand() != 1, "Sub-block merge can number should be 1" );
}
else
if ( !pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() && !pcSlice->getSPS()->getSpsNext().getUseAffine() ) // both off
{
CHECK( pcSlice->getMaxNumAffineMergeCand() != 0, "Sub-block merge can number should be 0" );
}
else
#endif
if ( pcSlice->getSPS()->getSpsNext().getUseAffine() )
{
CHECK( pcSlice->getMaxNumAffineMergeCand() > AFFINE_MRG_MAX_NUM_CANDS, "More affine merge candidates signalled than supported" );
WRITE_UVLC( AFFINE_MRG_MAX_NUM_CANDS - pcSlice->getMaxNumAffineMergeCand(), "five_minus_max_num_affine_merge_cand" );
}
#endif
}
int iCode = pcSlice->getSliceQp() - ( pcSlice->getPPS()->getPicInitQPMinus26() + 26 );
WRITE_SVLC( iCode, "slice_qp_delta" );
if (pcSlice->getPPS()->getSliceChromaQpFlag())
{
if (numberValidComponents > COMPONENT_Cb)
{
WRITE_SVLC( pcSlice->getSliceChromaQpDelta(COMPONENT_Cb), "slice_cb_qp_offset" );
}
if (numberValidComponents > COMPONENT_Cr)
{
WRITE_SVLC( pcSlice->getSliceChromaQpDelta(COMPONENT_Cr), "slice_cr_qp_offset" );
}
CHECK(numberValidComponents < COMPONENT_Cr+1, "Too many valid components");
}
if (pcSlice->getPPS()->getPpsRangeExtension().getChromaQpOffsetListEnabledFlag())
{
WRITE_FLAG(pcSlice->getUseChromaQpAdj(), "cu_chroma_qp_offset_enabled_flag");
}
if (pcSlice->getPPS()->getDeblockingFilterControlPresentFlag())
{
if (pcSlice->getPPS()->getDeblockingFilterOverrideEnabledFlag() )
{
WRITE_FLAG(pcSlice->getDeblockingFilterOverrideFlag(), "deblocking_filter_override_flag");
}
if (pcSlice->getDeblockingFilterOverrideFlag())
{
WRITE_FLAG(pcSlice->getDeblockingFilterDisable(), "slice_deblocking_filter_disabled_flag");
if(!pcSlice->getDeblockingFilterDisable())
{
WRITE_SVLC (pcSlice->getDeblockingFilterBetaOffsetDiv2(), "slice_beta_offset_div2");
WRITE_SVLC (pcSlice->getDeblockingFilterTcOffsetDiv2(), "slice_tc_offset_div2");
}
}
}
bool isSAOEnabled = pcSlice->getSPS()->getUseSAO() && (pcSlice->getSaoEnabledFlag(CHANNEL_TYPE_LUMA) || (chromaEnabled && pcSlice->getSaoEnabledFlag(CHANNEL_TYPE_CHROMA)));
bool isDBFEnabled = (!pcSlice->getDeblockingFilterDisable());
if(pcSlice->getPPS()->getLoopFilterAcrossSlicesEnabledFlag() && ( isSAOEnabled || isDBFEnabled ))
{
WRITE_FLAG(pcSlice->getLFCrossSliceBoundaryFlag()?1:0, "slice_loop_filter_across_slices_enabled_flag");
}
#if HEVC_DEPENDENT_SLICES
}
#endif
#if !JVET_L0198_L0468_L0104_ATMVP_8x8SUB_BLOCK
if (pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() && !pcSlice->isIntra())
{
WRITE_FLAG(pcSlice->getSubPuMvpSliceSubblkSizeEnable(), "slice_atmvp_subblk_size_enable_flag");
if (pcSlice->getSubPuMvpSliceSubblkSizeEnable())
{
WRITE_CODE(pcSlice->getSubPuMvpSubblkLog2Size() - MIN_CU_LOG2, 3, "log2_slice_sub_pu_tmvp_size_minus2");
}
}
#endif
if(pcSlice->getPPS()->getSliceHeaderExtensionPresentFlag())
{
WRITE_UVLC(0,"slice_segment_header_extension_length");
}
}
void HLSWriter::codePTL( const PTL* pcPTL, bool profilePresentFlag, int maxNumSubLayersMinus1)
{
if(profilePresentFlag)
{
codeProfileTier(pcPTL->getGeneralPTL(), false); // general_...
}
WRITE_CODE( int(pcPTL->getGeneralPTL()->getLevelIdc()), 8, "general_level_idc" );
for (int i = 0; i < maxNumSubLayersMinus1; i++)
{
WRITE_FLAG( pcPTL->getSubLayerProfilePresentFlag(i), "sub_layer_profile_present_flag[i]" );
WRITE_FLAG( pcPTL->getSubLayerLevelPresentFlag(i), "sub_layer_level_present_flag[i]" );
}
if (maxNumSubLayersMinus1 > 0)
{
for (int i = maxNumSubLayersMinus1; i < 8; i++)
{
WRITE_CODE(0, 2, "reserved_zero_2bits");
}
}
for(int i = 0; i < maxNumSubLayersMinus1; i++)
{
if( pcPTL->getSubLayerProfilePresentFlag(i) )
{
codeProfileTier(pcPTL->getSubLayerPTL(i), true); // sub_layer_...
}
if( pcPTL->getSubLayerLevelPresentFlag(i) )
{
WRITE_CODE( int(pcPTL->getSubLayerPTL(i)->getLevelIdc()), 8, "sub_layer_level_idc[i]" );
}
}
}
#if ENABLE_TRACING || RExt__DECODER_DEBUG_BIT_STATISTICS
void HLSWriter::codeProfileTier( const ProfileTierLevel* ptl, const bool bIsSubLayer )
#define PTL_TRACE_TEXT(txt) bIsSubLayer?("sub_layer_" txt) : ("general_" txt)
#else
void HLSWriter::codeProfileTier( const ProfileTierLevel* ptl, const bool /*bIsSubLayer*/ )
#define PTL_TRACE_TEXT(txt) txt
#endif
{
WRITE_CODE( ptl->getProfileSpace(), 2 , PTL_TRACE_TEXT("profile_space" ));
WRITE_FLAG( ptl->getTierFlag()==Level::HIGH, PTL_TRACE_TEXT("tier_flag" ));
WRITE_CODE( int(ptl->getProfileIdc()), 5 , PTL_TRACE_TEXT("profile_idc" ));
for(int j = 0; j < 32; j++)
{
WRITE_FLAG( ptl->getProfileCompatibilityFlag(j), PTL_TRACE_TEXT("profile_compatibility_flag[][j]" ));
}
WRITE_FLAG(ptl->getProgressiveSourceFlag(), PTL_TRACE_TEXT("progressive_source_flag" ));
WRITE_FLAG(ptl->getInterlacedSourceFlag(), PTL_TRACE_TEXT("interlaced_source_flag" ));
WRITE_FLAG(ptl->getNonPackedConstraintFlag(), PTL_TRACE_TEXT("non_packed_constraint_flag" ));
WRITE_FLAG(ptl->getFrameOnlyConstraintFlag(), PTL_TRACE_TEXT("frame_only_constraint_flag" ));
if (ptl->getProfileIdc() == Profile::MAINREXT || ptl->getProfileIdc() == Profile::HIGHTHROUGHPUTREXT )
{
const uint32_t bitDepthConstraint=ptl->getBitDepthConstraint();
WRITE_FLAG(bitDepthConstraint<=12, PTL_TRACE_TEXT("max_12bit_constraint_flag" ));
WRITE_FLAG(bitDepthConstraint<=10, PTL_TRACE_TEXT("max_10bit_constraint_flag" ));
WRITE_FLAG(bitDepthConstraint<= 8, PTL_TRACE_TEXT("max_8bit_constraint_flag" ));
const ChromaFormat chromaFmtConstraint=ptl->getChromaFormatConstraint();
WRITE_FLAG(chromaFmtConstraint==CHROMA_422||chromaFmtConstraint==CHROMA_420||chromaFmtConstraint==CHROMA_400, PTL_TRACE_TEXT("max_422chroma_constraint_flag" ));
WRITE_FLAG(chromaFmtConstraint==CHROMA_420||chromaFmtConstraint==CHROMA_400, PTL_TRACE_TEXT("max_420chroma_constraint_flag" ));
WRITE_FLAG(chromaFmtConstraint==CHROMA_400, PTL_TRACE_TEXT("max_monochrome_constraint_flag"));
WRITE_FLAG(ptl->getIntraConstraintFlag(), PTL_TRACE_TEXT("intra_constraint_flag" ));
WRITE_FLAG(ptl->getOnePictureOnlyConstraintFlag(), PTL_TRACE_TEXT("one_picture_only_constraint_flag"));
WRITE_FLAG(ptl->getLowerBitRateConstraintFlag(), PTL_TRACE_TEXT("lower_bit_rate_constraint_flag" ));
WRITE_CODE(0 , 16, PTL_TRACE_TEXT("reserved_zero_34bits[0..15]" ));
WRITE_CODE(0 , 16, PTL_TRACE_TEXT("reserved_zero_34bits[16..31]" ));
WRITE_CODE(0 , 2, PTL_TRACE_TEXT("reserved_zero_34bits[32..33]" ));
}
else
{
WRITE_CODE(0x0000 , 16, PTL_TRACE_TEXT("reserved_zero_43bits[0..15]" ));
WRITE_CODE(0x0000 , 16, PTL_TRACE_TEXT("reserved_zero_43bits[16..31]" ));
WRITE_CODE(0x000 , 11, PTL_TRACE_TEXT("reserved_zero_43bits[32..42]" ));
}
WRITE_FLAG(false, PTL_TRACE_TEXT("reserved_zero_bit" ));
#undef PTL_TRACE_TEXT
}
#if HEVC_TILES_WPP
/**
* Write tiles and wavefront substreams sizes for the slice header (entry points).
*
* \param pSlice Slice structure that contains the substream size information.
*/
void HLSWriter::codeTilesWPPEntryPoint( Slice* pSlice )
{
if (!pSlice->getPPS()->getTilesEnabledFlag() && !pSlice->getPPS()->getEntropyCodingSyncEnabledFlag())
{
return;
}
uint32_t maxOffset = 0;
for(int idx=0; idx<pSlice->getNumberOfSubstreamSizes(); idx++)
{
uint32_t offset=pSlice->getSubstreamSize(idx);
if ( offset > maxOffset )
{
maxOffset = offset;
}
}
// Determine number of bits "offsetLenMinus1+1" required for entry point information
uint32_t offsetLenMinus1 = 0;
while (maxOffset >= (1u << (offsetLenMinus1 + 1)))
{
offsetLenMinus1++;
CHECK(offsetLenMinus1 + 1 >= 32, "Invalid offset lenght minus 1");
}
WRITE_UVLC(pSlice->getNumberOfSubstreamSizes(), "num_entry_point_offsets");
if (pSlice->getNumberOfSubstreamSizes()>0)
{
WRITE_UVLC(offsetLenMinus1, "offset_len_minus1");
for (uint32_t idx=0; idx<pSlice->getNumberOfSubstreamSizes(); idx++)
{
WRITE_CODE(pSlice->getSubstreamSize(idx)-1, offsetLenMinus1+1, "entry_point_offset_minus1");
}
}
}
#endif
// ====================================================================================================================
// Protected member functions
// ====================================================================================================================
//! Code weighted prediction tables
void HLSWriter::xCodePredWeightTable( Slice* pcSlice )
{
WPScalingParam *wp;
const ChromaFormat format = pcSlice->getSPS()->getChromaFormatIdc();
const uint32_t numberValidComponents = getNumberValidComponents(format);
const bool bChroma = isChromaEnabled(format);
const int iNbRef = (pcSlice->getSliceType() == B_SLICE ) ? (2) : (1);
bool bDenomCoded = false;
uint32_t uiTotalSignalledWeightFlags = 0;
if ( (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPred()) )
{
for ( int iNumRef=0 ; iNumRef<iNbRef ; iNumRef++ ) // loop over l0 and l1 syntax elements
{
RefPicList eRefPicList = ( iNumRef ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
// NOTE: wp[].uiLog2WeightDenom and wp[].bPresentFlag are actually per-channel-type settings.
for ( int iRefIdx=0 ; iRefIdx<pcSlice->getNumRefIdx(eRefPicList) ; iRefIdx++ )
{
pcSlice->getWpScaling(eRefPicList, iRefIdx, wp);
if ( !bDenomCoded )
{
int iDeltaDenom;
WRITE_UVLC( wp[COMPONENT_Y].uiLog2WeightDenom, "luma_log2_weight_denom" );
if( bChroma )
{
CHECK( wp[COMPONENT_Cb].uiLog2WeightDenom != wp[COMPONENT_Cr].uiLog2WeightDenom, "Chroma blocks of different size not supported" );
iDeltaDenom = (wp[COMPONENT_Cb].uiLog2WeightDenom - wp[COMPONENT_Y].uiLog2WeightDenom);
WRITE_SVLC( iDeltaDenom, "delta_chroma_log2_weight_denom" );
}
bDenomCoded = true;
}
WRITE_FLAG( wp[COMPONENT_Y].bPresentFlag, iNumRef==0?"luma_weight_l0_flag[i]":"luma_weight_l1_flag[i]" );
uiTotalSignalledWeightFlags += wp[COMPONENT_Y].bPresentFlag;
}
if (bChroma)
{
for ( int iRefIdx=0 ; iRefIdx<pcSlice->getNumRefIdx(eRefPicList) ; iRefIdx++ )
{
pcSlice->getWpScaling( eRefPicList, iRefIdx, wp );
CHECK( wp[COMPONENT_Cb].bPresentFlag != wp[COMPONENT_Cr].bPresentFlag, "Inconsistent settings for chroma channels" );
WRITE_FLAG( wp[COMPONENT_Cb].bPresentFlag, iNumRef==0?"chroma_weight_l0_flag[i]":"chroma_weight_l1_flag[i]" );
uiTotalSignalledWeightFlags += 2*wp[COMPONENT_Cb].bPresentFlag;
}
}
for ( int iRefIdx=0 ; iRefIdx<pcSlice->getNumRefIdx(eRefPicList) ; iRefIdx++ )
{
pcSlice->getWpScaling(eRefPicList, iRefIdx, wp);
if ( wp[COMPONENT_Y].bPresentFlag )
{
int iDeltaWeight = (wp[COMPONENT_Y].iWeight - (1<<wp[COMPONENT_Y].uiLog2WeightDenom));
WRITE_SVLC( iDeltaWeight, iNumRef==0?"delta_luma_weight_l0[i]":"delta_luma_weight_l1[i]" );
WRITE_SVLC( wp[COMPONENT_Y].iOffset, iNumRef==0?"luma_offset_l0[i]":"luma_offset_l1[i]" );
}
if ( bChroma )
{
if ( wp[COMPONENT_Cb].bPresentFlag )
{
for ( int j = COMPONENT_Cb ; j < numberValidComponents ; j++ )
{
CHECK(wp[COMPONENT_Cb].uiLog2WeightDenom != wp[COMPONENT_Cr].uiLog2WeightDenom, "Chroma blocks of different size not supported");
int iDeltaWeight = (wp[j].iWeight - (1<<wp[COMPONENT_Cb].uiLog2WeightDenom));
WRITE_SVLC( iDeltaWeight, iNumRef==0?"delta_chroma_weight_l0[i]":"delta_chroma_weight_l1[i]" );
int range=pcSlice->getSPS()->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag() ? (1<<pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA))/2 : 128;
int pred = ( range - ( ( range*wp[j].iWeight)>>(wp[j].uiLog2WeightDenom) ) );
int iDeltaChroma = (wp[j].iOffset - pred);
WRITE_SVLC( iDeltaChroma, iNumRef==0?"delta_chroma_offset_l0[i]":"delta_chroma_offset_l1[i]" );
}
}
}
}
}
CHECK(uiTotalSignalledWeightFlags>24, "Too many signalled weight flags");
}
}
#if HEVC_USE_SCALING_LISTS
/** code quantization matrix
* \param scalingList quantization matrix information
*/
void HLSWriter::codeScalingList( const ScalingList &scalingList )
{
//for each size
for(uint32_t sizeId = SCALING_LIST_FIRST_CODED; sizeId <= SCALING_LIST_LAST_CODED; sizeId++)
{
const int predListStep = (sizeId == SCALING_LIST_32x32? (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) : 1); // if 32x32, skip over chroma entries.
for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId+=predListStep)
{
bool scalingListPredModeFlag = scalingList.getScalingListPredModeFlag(sizeId, listId);
WRITE_FLAG( scalingListPredModeFlag, "scaling_list_pred_mode_flag" );
if(!scalingListPredModeFlag)// Copy Mode
{
if (sizeId == SCALING_LIST_32x32)
{
// adjust the code, to cope with the missing chroma entries
WRITE_UVLC( ((int)listId - (int)scalingList.getRefMatrixId (sizeId,listId)) / (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES), "scaling_list_pred_matrix_id_delta");
}
else
{
WRITE_UVLC( (int)listId - (int)scalingList.getRefMatrixId (sizeId,listId), "scaling_list_pred_matrix_id_delta");
}
}
else// DPCM Mode
{
xCodeScalingList(&scalingList, sizeId, listId);
}
}
}
return;
}
/** code DPCM
* \param scalingList quantization matrix information
* \param sizeId size index
* \param listId list index
*/
void HLSWriter::xCodeScalingList(const ScalingList* scalingList, uint32_t sizeId, uint32_t listId)
{
int coefNum = std::min( MAX_MATRIX_COEF_NUM, ( int ) g_scalingListSize[sizeId] );
uint32_t* scan = g_scanOrder[SCAN_UNGROUPED][SCAN_DIAG][gp_sizeIdxInfo->idxFrom( 1 << ( sizeId == SCALING_LIST_FIRST_CODED ? 2 : 3 ) )][gp_sizeIdxInfo->idxFrom( 1 << ( sizeId == SCALING_LIST_FIRST_CODED ? 2 : 3 ) )];
int nextCoef = SCALING_LIST_START_VALUE;
int data;
const int *src = scalingList->getScalingListAddress(sizeId, listId);
if( sizeId > SCALING_LIST_8x8 )
{
WRITE_SVLC( scalingList->getScalingListDC(sizeId,listId) - 8, "scaling_list_dc_coef_minus8");
nextCoef = scalingList->getScalingListDC(sizeId,listId);
}
for(int i=0;i<coefNum;i++)
{
data = src[scan[i]] - nextCoef;
nextCoef = src[scan[i]];
if(data > 127)
{
data = data - 256;
}
if(data < -128)
{
data = data + 256;
}
WRITE_SVLC( data, "scaling_list_delta_coef");
}
}
#endif
bool HLSWriter::xFindMatchingLTRP(Slice* pcSlice, uint32_t *ltrpsIndex, int ltrpPOC, bool usedFlag)
{
// bool state = true, state2 = false;
int lsb = ltrpPOC & ((1<<pcSlice->getSPS()->getBitsForPOC())-1);
for (int k = 0; k < pcSlice->getSPS()->getNumLongTermRefPicSPS(); k++)
{
if ( (lsb == pcSlice->getSPS()->getLtRefPicPocLsbSps(k)) && (usedFlag == pcSlice->getSPS()->getUsedByCurrPicLtSPSFlag(k)) )
{
*ltrpsIndex = k;
return true;
}
}
return false;
}
void HLSWriter::alf( const AlfSliceParam& alfSliceParam )
{
WRITE_FLAG( alfSliceParam.enabledFlag[COMPONENT_Y], "alf_slice_enable_flag" );
if( !alfSliceParam.enabledFlag[COMPONENT_Y] )
{
return;
}
const int alfChromaIdc = alfSliceParam.enabledFlag[COMPONENT_Cb] * 2 + alfSliceParam.enabledFlag[COMPONENT_Cr];
truncatedUnaryEqProb( alfChromaIdc, 3 ); // alf_chroma_idc
xWriteTruncBinCode( alfSliceParam.numLumaFilters - 1, MAX_NUM_ALF_CLASSES ); //number_of_filters_minus1
#if !JVET_L0664_ALF_REMOVE_LUMA_5x5
WRITE_FLAG( alfSliceParam.lumaFilterType == ALF_FILTER_5 ? 1 : 0, "filter_type_flag" );
#endif
if( alfSliceParam.numLumaFilters > 1 )
{
for( int i = 0; i < MAX_NUM_ALF_CLASSES; i++ )
{
xWriteTruncBinCode( (uint32_t)alfSliceParam.filterCoeffDeltaIdx[i], alfSliceParam.numLumaFilters ); //filter_coeff_delta[i]
}
}
alfFilter( alfSliceParam, false );
if( alfChromaIdc )
{
WRITE_FLAG( alfSliceParam.chromaCtbPresentFlag, "alf_chroma_ctb_present_flag" );
alfFilter( alfSliceParam, true );
}
}
void HLSWriter::alfGolombEncode( int coeff, int k )
{
int symbol = abs( coeff );
int m = (int)pow( 2.0, k );
int q = symbol / m;
for( int i = 0; i < q; i++ )
{
xWriteFlag( 1 );
}
xWriteFlag( 0 );
// write one zero
for( int i = 0; i < k; i++ )
{
xWriteFlag( symbol & 0x01 );
symbol >>= 1;
}
if( coeff != 0 )
{
int sign = ( coeff > 0 ) ? 1 : 0;
xWriteFlag( sign );
}
}
void HLSWriter::alfFilter( const AlfSliceParam& alfSliceParam, const bool isChroma )
{
if( !isChroma )
{
WRITE_FLAG( alfSliceParam.coeffDeltaFlag, "alf_coefficients_delta_flag" );
if( !alfSliceParam.coeffDeltaFlag )
{
if( alfSliceParam.numLumaFilters > 1 )
{
WRITE_FLAG( alfSliceParam.coeffDeltaPredModeFlag, "coeff_delta_pred_mode_flag" );
}
}
}
static int bitsCoeffScan[EncAdaptiveLoopFilter::m_MAX_SCAN_VAL][EncAdaptiveLoopFilter::m_MAX_EXP_GOLOMB];
memset( bitsCoeffScan, 0, sizeof( bitsCoeffScan ) );
#if JVET_L0664_ALF_REMOVE_LUMA_5x5
AlfFilterShape alfShape( isChroma ? 5 : 7 );
#else
AlfFilterShape alfShape( isChroma ? 5 : ( alfSliceParam.lumaFilterType == ALF_FILTER_5 ? 5 : 7 ) );
#endif
const int maxGolombIdx = AdaptiveLoopFilter::getMaxGolombIdx( alfShape.filterType );
const short* coeff = isChroma ? alfSliceParam.chromaCoeff : alfSliceParam.lumaCoeff;
const int numFilters = isChroma ? 1 : alfSliceParam.numLumaFilters;
// vlc for all
for( int ind = 0; ind < numFilters; ++ind )
{
if( isChroma || !alfSliceParam.coeffDeltaFlag || alfSliceParam.filterCoeffFlag[ind] )
{
for( int i = 0; i < alfShape.numCoeff - 1; i++ )
{
int coeffVal = abs( coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i] );
for( int k = 1; k < 15; k++ )
{
bitsCoeffScan[alfShape.golombIdx[i]][k] += EncAdaptiveLoopFilter::lengthGolomb( coeffVal, k );
}
}
}
}
static int kMinTab[MAX_NUM_ALF_COEFF];
int kMin = EncAdaptiveLoopFilter::getGolombKMin( alfShape, numFilters, kMinTab, bitsCoeffScan );
// Golomb parameters
WRITE_UVLC( kMin - 1, "min_golomb_order" );
for( int idx = 0; idx < maxGolombIdx; idx++ )
{
bool golombOrderIncreaseFlag = ( kMinTab[idx] != kMin ) ? true : false;
CHECK( !( kMinTab[idx] <= kMin + 1 ), "ALF Golomb parameter not consistent" );
WRITE_FLAG( golombOrderIncreaseFlag, "golomb_order_increase_flag" );
kMin = kMinTab[idx];
}
if( !isChroma )
{
if( alfSliceParam.coeffDeltaFlag )
{
for( int ind = 0; ind < numFilters; ++ind )
{
WRITE_FLAG( alfSliceParam.filterCoeffFlag[ind], "filter_coefficient_flag[i]" );
}
}
}
// Filter coefficients
for( int ind = 0; ind < numFilters; ++ind )
{
if( !isChroma && !alfSliceParam.filterCoeffFlag[ind] && alfSliceParam.coeffDeltaFlag )
{
continue;
}
for( int i = 0; i < alfShape.numCoeff - 1; i++ )
{
alfGolombEncode( coeff[ind* MAX_NUM_ALF_LUMA_COEFF + i], kMinTab[alfShape.golombIdx[i]] ); // alf_coeff_chroma[i], alf_coeff_luma_delta[i][j]
}
}
}
void HLSWriter::xWriteTruncBinCode( uint32_t uiSymbol, const int uiMaxSymbol )
{
int uiThresh;
if( uiMaxSymbol > 256 )
{
int uiThreshVal = 1 << 8;
uiThresh = 8;
while( uiThreshVal <= uiMaxSymbol )
{
uiThresh++;
uiThreshVal <<= 1;
}
uiThresh--;
}
else
{
uiThresh = g_tbMax[uiMaxSymbol];
}
int uiVal = 1 << uiThresh;
assert( uiVal <= uiMaxSymbol );
assert( ( uiVal << 1 ) > uiMaxSymbol );
assert( uiSymbol < uiMaxSymbol );
int b = uiMaxSymbol - uiVal;
assert( b < uiVal );
if( uiSymbol < uiVal - b )
{
xWriteCode( uiSymbol, uiThresh );
}
else
{
uiSymbol += uiVal - b;
assert( uiSymbol < ( uiVal << 1 ) );
assert( ( uiSymbol >> 1 ) >= uiVal - b );
xWriteCode( uiSymbol, uiThresh + 1 );
}
}
void HLSWriter::truncatedUnaryEqProb( int symbol, const int maxSymbol )
{
if( maxSymbol == 0 )
{
return;
}
bool codeLast = ( maxSymbol > symbol );
int bins = 0;
int numBins = 0;
while( symbol-- )
{
bins <<= 1;
bins++;
numBins++;
}
if( codeLast )
{
bins <<= 1;
numBins++;
}
CHECK( !( numBins <= 32 ), "Unspecified error" );
xWriteCode( bins, numBins );
}
//! \}