Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncSearch.cpp
* \brief encoder intra search class
*/
#include "IntraSearch.h"
#include "EncModeCtrl.h"
#include "CommonLib/CommonDef.h"
#include "CommonLib/Rom.h"
#include "CommonLib/Picture.h"
#include "CommonLib/UnitTools.h"
#include "CommonLib/dtrace_next.h"
#include "CommonLib/dtrace_buffer.h"
#include <math.h>
#include <limits>
//! \ingroup EncoderLib
//! \{
IntraSearch::IntraSearch()
: m_pSplitCS (nullptr)
, m_pFullCS (nullptr)
, m_pBestCS (nullptr)
, m_pcEncCfg (nullptr)
, m_pcTrQuant (nullptr)
, m_pcRdCost (nullptr)
#if JVET_M0427_INLOOP_RESHAPER
, m_pcReshape (nullptr)
#endif

Karsten Suehring
committed
, m_CABACEstimator(nullptr)
, m_CtxCache (nullptr)
, m_isInitialized (false)
{
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = nullptr;
}
}
void IntraSearch::destroy()
{
CHECK( !m_isInitialized, "Not initialized" );
if( m_pcEncCfg )
{
const uint32_t uiNumLayersToAllocateSplit = 1;
const uint32_t uiNumLayersToAllocateFull = 1;

Karsten Suehring
committed
const int uiNumSaveLayersToAllocate = 2;
for( uint32_t layer = 0; layer < uiNumSaveLayersToAllocate; layer++ )
{
m_pSaveCS[layer]->destroy();
delete m_pSaveCS[layer];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
for( uint32_t width = 0; width < numWidths; width++ )
{
for( uint32_t height = 0; height < numHeights; height++ )
{
if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )

Karsten Suehring
committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer]->destroy();
delete m_pSplitCS[width][height][layer];
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS[width][height][layer]->destroy();
delete m_pFullCS[width][height][layer];
}
delete[] m_pSplitCS[width][height];
delete[] m_pFullCS [width][height];
m_pBestCS[width][height]->destroy();
m_pTempCS[width][height]->destroy();
delete m_pTempCS[width][height];
delete m_pBestCS[width][height];
}
}
delete[] m_pSplitCS[width];
delete[] m_pFullCS [width];
delete[] m_pTempCS[width];
delete[] m_pBestCS[width];
}
delete[] m_pSplitCS;
delete[] m_pFullCS;
delete[] m_pBestCS;
delete[] m_pTempCS;
delete[] m_pSaveCS;
}
m_pSplitCS = m_pFullCS = nullptr;
m_pBestCS = m_pTempCS = nullptr;
m_pSaveCS = nullptr;
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
delete[] m_pSharedPredTransformSkip[ch];
m_pSharedPredTransformSkip[ch] = nullptr;
}
#if JVET_M0427_INLOOP_RESHAPER
m_tmpStorageLCU.destroy();
#endif

Karsten Suehring
committed
m_isInitialized = false;
}
IntraSearch::~IntraSearch()
{
if( m_isInitialized )
{
destroy();
}
}
void IntraSearch::init( EncCfg* pcEncCfg,
TrQuant* pcTrQuant,
RdCost* pcRdCost,
CABACWriter* CABACEstimator,
CtxCache* ctxCache,
const uint32_t maxCUWidth,
const uint32_t maxCUHeight,
const uint32_t maxTotalCUDepth
#if JVET_M0427_INLOOP_RESHAPER
, EncReshape* pcReshape
#endif

Karsten Suehring
committed
)
{
CHECK(m_isInitialized, "Already initialized");
m_pcEncCfg = pcEncCfg;
m_pcTrQuant = pcTrQuant;
m_pcRdCost = pcRdCost;
m_CABACEstimator = CABACEstimator;
m_CtxCache = ctxCache;
#if JVET_M0427_INLOOP_RESHAPER
m_pcReshape = pcReshape;
#endif

Karsten Suehring
committed
const ChromaFormat cform = pcEncCfg->getChromaFormatIdc();
IntraPrediction::init( cform, pcEncCfg->getBitDepth( CHANNEL_TYPE_LUMA ) );
#if JVET_M0427_INLOOP_RESHAPER
m_tmpStorageLCU.create(UnitArea(cform, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));
#endif

Karsten Suehring
committed
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = new Pel[MAX_CU_SIZE * MAX_CU_SIZE];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
const uint32_t uiNumLayersToAllocateSplit = 1;
const uint32_t uiNumLayersToAllocateFull = 1;

Karsten Suehring
committed
m_pBestCS = new CodingStructure**[numWidths];
m_pTempCS = new CodingStructure**[numWidths];
m_pFullCS = new CodingStructure***[numWidths];
m_pSplitCS = new CodingStructure***[numWidths];
for( uint32_t width = 0; width < numWidths; width++ )
{
m_pBestCS[width] = new CodingStructure*[numHeights];
m_pTempCS[width] = new CodingStructure*[numHeights];
m_pFullCS [width] = new CodingStructure**[numHeights];
m_pSplitCS[width] = new CodingStructure**[numHeights];
for( uint32_t height = 0; height < numHeights; height++ )
{
if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )

Karsten Suehring
committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
{
m_pBestCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pTempCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pBestCS[width][height]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
m_pTempCS[width][height]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
m_pFullCS [width][height] = new CodingStructure*[uiNumLayersToAllocateFull];
m_pSplitCS[width][height] = new CodingStructure*[uiNumLayersToAllocateSplit];
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS [width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pFullCS [width][height][layer]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSplitCS[width][height][layer]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
}
}
else
{
m_pBestCS[width][height] = nullptr;
m_pTempCS[width][height] = nullptr;
m_pFullCS [width][height] = nullptr;
m_pSplitCS[width][height] = nullptr;
}
}
}
const int uiNumSaveLayersToAllocate = 2;
m_pSaveCS = new CodingStructure*[uiNumSaveLayersToAllocate];
for( uint32_t depth = 0; depth < uiNumSaveLayersToAllocate; depth++ )
{
m_pSaveCS[depth] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSaveCS[depth]->create( UnitArea( cform, Area( 0, 0, maxCUWidth, maxCUHeight ) ), false );
}
m_isInitialized = true;
}
//////////////////////////////////////////////////////////////////////////
// INTRA PREDICTION
//////////////////////////////////////////////////////////////////////////
#if JVET_M0102_INTRA_SUBPARTITIONS
void IntraSearch::estIntraPredLumaQT( CodingUnit &cu, Partitioner &partitioner, const double bestCostSoFar )
#else

Karsten Suehring
committed
void IntraSearch::estIntraPredLumaQT( CodingUnit &cu, Partitioner &partitioner )

Karsten Suehring
committed
{
CodingStructure &cs = *cu.cs;
const SPS &sps = *cs.sps;
const uint32_t uiWidthBit = g_aucLog2[partitioner.currArea().lwidth() ];

Karsten Suehring
committed
const uint32_t uiHeightBit = g_aucLog2[partitioner.currArea().lheight()];
// Lambda calculation at equivalent Qp of 4 is recommended because at that Qp, the quantization divisor is 1.
const double sqrtLambdaForFirstPass = m_pcRdCost->getMotionLambda(cu.transQuantBypass) / double(1 << SCALE_BITS);
//===== loop over partitions =====
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
const TempCtx ctxStartIntraMode ( m_CtxCache, SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartMHIntraMode ( m_CtxCache, SubCtx( Ctx::MHIntraPredMode, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartMrlIdx ( m_CtxCache, SubCtx( Ctx::MultiRefLineIdx, m_CABACEstimator->getCtx() ) );

Karsten Suehring
committed
CHECK( !cu.firstPU, "CU has no PUs" );
const bool keepResi = cs.pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() || KEEP_PRED_AND_RESI_SIGNALS;
uint32_t extraModes = 0; // add two extra modes, which would be used after uiMode <= DC_IDX is removed for cu.nsstIdx == 3

Karsten Suehring
committed
const int width = partitioner.currArea().lwidth();
const int height = partitioner.currArea().lheight();
// Marking EMT usage for faster EMT
// 0: EMT is either not applicable for current CU (cuWidth > EMT_INTRA_MAX_CU or cuHeight > EMT_INTRA_MAX_CU), not active in the config file or the fast decision algorithm is not used in this case
// 1: EMT fast algorithm can be applied for the current CU, and the DCT2 is being checked
// 2: EMT is being checked for current CU. Stored results of DCT2 can be utilized for speedup
uint8_t emtUsageFlag = 0;

Karsten Suehring
committed
if( width <= maxSizeEMT && height <= maxSizeEMT && sps.getSpsNext().getUseIntraEMT() )
{
emtUsageFlag = cu.emtFlag == 1 ? 2 : 1;
}
bool isAllIntra = m_pcEncCfg->getIntraPeriod() == 1;

Karsten Suehring
committed
{
emtUsageFlag = 0; //this forces the recalculation of the candidates list. Why is this necessary? (to be checked)

Karsten Suehring
committed
}
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#if JVET_M0102_INTRA_SUBPARTITIONS
#if JVET_M0464_UNI_MTS
const int width = partitioner.currArea().lwidth();
const int height = partitioner.currArea().lheight();
int nOptionsForISP = NUM_INTRA_SUBPARTITIONS_MODES;
#else
int nOptionsForISP = cu.emtFlag == 0 ? NUM_INTRA_SUBPARTITIONS_MODES : 1;
#endif
double bestCurrentCost = bestCostSoFar;
int ispOptions[NUM_INTRA_SUBPARTITIONS_MODES] = { 0 };
if( nOptionsForISP > 1 )
{
auto splitsThatCanBeUsedForISP = CU::canUseISPSplit( width, height, cu.cs->sps->getMaxTrSize() );
if( splitsThatCanBeUsedForISP == CAN_USE_VER_AND_HORL_SPLITS )
{
const CodingUnit* cuLeft = cu.ispMode != NOT_INTRA_SUBPARTITIONS ? cs.getCU( cs.area.blocks[partitioner.chType].pos().offset( -1, 0 ), partitioner.chType ) : nullptr;
const CodingUnit* cuAbove = cu.ispMode != NOT_INTRA_SUBPARTITIONS ? cs.getCU( cs.area.blocks[partitioner.chType].pos().offset( 0, -1 ), partitioner.chType ) : nullptr;
bool ispHorIsFirstTest = CU::firstTestISPHorSplit( width, height, COMPONENT_Y, cuLeft, cuAbove );
if( ispHorIsFirstTest )
{
ispOptions[1] = HOR_INTRA_SUBPARTITIONS;
ispOptions[2] = VER_INTRA_SUBPARTITIONS;
}
else
{
ispOptions[1] = VER_INTRA_SUBPARTITIONS;
ispOptions[2] = HOR_INTRA_SUBPARTITIONS;
}
}
else if( splitsThatCanBeUsedForISP == HOR_INTRA_SUBPARTITIONS )
{
nOptionsForISP = 2;
ispOptions[1] = HOR_INTRA_SUBPARTITIONS;
}
else if( splitsThatCanBeUsedForISP == VER_INTRA_SUBPARTITIONS )
{
nOptionsForISP = 2;
ispOptions[1] = VER_INTRA_SUBPARTITIONS;
}
else
{
nOptionsForISP = 1;
}
}
if( nOptionsForISP > 1 )
{
//variables for the full RD list without MRL modes
m_rdModeListWithoutMrl .clear();
m_rdModeListWithoutMrlHor .clear();
m_rdModeListWithoutMrlVer .clear();
//variables with data from regular intra used to skip ISP splits
m_intraModeDiagRatio .clear();
m_intraModeHorVerRatio .clear();
m_intraModeTestedNormalIntra.clear();
}
#endif

Karsten Suehring
committed
static_vector<uint32_t, FAST_UDI_MAX_RDMODE_NUM> uiHadModeList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandCostList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandHadList;
static_vector<int, FAST_UDI_MAX_RDMODE_NUM> extendRefList;
static_vector<int, FAST_UDI_MAX_RDMODE_NUM>* nullList = NULL;

Karsten Suehring
committed
auto &pu = *cu.firstPU;

Karsten Suehring
committed
int puIndex = 0;

Karsten Suehring
committed
{
CandHadList.clear();
CandCostList.clear();
uiHadModeList.clear();

Karsten Suehring
committed
CHECK(pu.cu != &cu, "PU is not contained in the CU");
//===== determine set of modes to be tested (using prediction signal only) =====
int numModesAvailable = NUM_LUMA_MODE; // total number of Intra modes
static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeList;
int numModesForFullRD = 3;
numModesForFullRD = g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];

Karsten Suehring
committed
#if INTRA_FULL_SEARCH
numModesForFullRD = numModesAvailable;
#endif

Karsten Suehring
committed
if( emtUsageFlag != 2 )

Karsten Suehring
committed
{
// this should always be true
CHECK( !pu.Y().valid(), "PU is not valid" );
bool isFirstLineOfCtu = (((pu.block(COMPONENT_Y).y)&((pu.cs->sps)->getMaxCUWidth() - 1)) == 0);
int numOfPassesExtendRef = (isFirstLineOfCtu ? 1 : MRL_NUM_REF_LINES);
pu.multiRefIdx = 0;

Karsten Suehring
committed
//===== init pattern for luma prediction =====
initIntraPatternChType( cu, pu.Y(), IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Y, pu, false, pu ) );
if( numModesForFullRD != numModesAvailable )
{
CHECK( numModesForFullRD >= numModesAvailable, "Too many modes for full RD search" );
const CompArea &area = pu.Y();
PelBuf piOrg = cs.getOrgBuf(area);
PelBuf piPred = cs.getPredBuf(area);
DistParam distParam;
const bool bUseHadamard = cu.transQuantBypass == 0;
#if JVET_M0427_INLOOP_RESHAPER
if (cu.slice->getReshapeInfo().getUseSliceReshaper() && m_pcReshape->getCTUFlag())
{
CompArea tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpOrg = m_tmpStorageLCU.getBuf(tmpArea);
tmpOrg.copyFrom(piOrg);
tmpOrg.rspSignal(m_pcReshape->getFwdLUT());
m_pcRdCost->setDistParam(distParam, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, bUseHadamard);
}
else
#endif

Karsten Suehring
committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
m_pcRdCost->setDistParam(distParam, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, bUseHadamard);
distParam.applyWeight = false;
bool bSatdChecked[NUM_INTRA_MODE];
memset( bSatdChecked, 0, sizeof( bSatdChecked ) );
{
for( int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++ )
{
uint32_t uiMode = modeIdx;
Distortion uiSad = 0;
// Skip checking extended Angular modes in the first round of SATD
if( uiMode > DC_IDX && ( uiMode & 1 ) )
{
continue;
}
bSatdChecked[uiMode] = true;
pu.intraDir[0] = modeIdx;
if( useDPCMForFirstPassIntraEstimation( pu, uiMode ) )
{
encPredIntraDPCM( COMPONENT_Y, piOrg, piPred, uiMode );
}
else
{
predIntraAng( COMPONENT_Y, piPred, pu, IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Y, pu, true, pu ) );
}
// use Hadamard transform here
uiSad += distParam.distFunc(distParam);
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
m_CABACEstimator->getCtx() = SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

Karsten Suehring
committed
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);
double cost = ( double ) uiSad + ( double ) fracModeBits * sqrtLambdaForFirstPass;
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraHAD: %u, %llu, %f (%d)\n", uiSad, fracModeBits, cost, uiMode );
updateCandList( uiMode, cost, uiRdModeList, CandCostList
, extendRefList, 0
, numModesForFullRD + extraModes );
updateCandList(uiMode, (double) uiSad, uiHadModeList, CandHadList
, *nullList, -1
, 3 + extraModes);

Karsten Suehring
committed
}
} // NSSTFlag
// forget the extra modes
uiRdModeList.resize( numModesForFullRD );
CandCostList.resize(numModesForFullRD);
extendRefList.resize(numModesForFullRD);

Karsten Suehring
committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
static_vector<unsigned, FAST_UDI_MAX_RDMODE_NUM> parentCandList(FAST_UDI_MAX_RDMODE_NUM);
std::copy_n(uiRdModeList.begin(), numModesForFullRD, parentCandList.begin());
// Second round of SATD for extended Angular modes
for (int modeIdx = 0; modeIdx < numModesForFullRD; modeIdx++)
{
unsigned parentMode = parentCandList[modeIdx];
if (parentMode > (DC_IDX + 1) && parentMode < (NUM_LUMA_MODE - 1))
{
for (int subModeIdx = -1; subModeIdx <= 1; subModeIdx += 2)
{
unsigned mode = parentMode + subModeIdx;
if (!bSatdChecked[mode])
{
pu.intraDir[0] = mode;
if (useDPCMForFirstPassIntraEstimation(pu, mode))
{
encPredIntraDPCM(COMPONENT_Y, piOrg, piPred, mode);
}
else
{
predIntraAng(COMPONENT_Y, piPred, pu,
IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, true, pu));
}
// use Hadamard transform here
Distortion sad = distParam.distFunc(distParam);
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
m_CABACEstimator->getCtx() = SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

Karsten Suehring
committed
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) sad + (double) fracModeBits * sqrtLambdaForFirstPass;
updateCandList(mode, cost, uiRdModeList, CandCostList
, extendRefList, 0
, numModesForFullRD);
updateCandList(mode, (double)sad, uiHadModeList, CandHadList
, *nullList, -1
, 3);

Karsten Suehring
committed
bSatdChecked[mode] = true;
}
}
}
}
#if JVET_M0102_INTRA_SUBPARTITIONS
if( nOptionsForISP > 1 )
{
//we save the list with no mrl modes to keep only the Hadamard selected modes (no mpms)
m_rdModeListWithoutMrl.resize( numModesForFullRD );
std::copy_n( uiRdModeList.begin(), numModesForFullRD, m_rdModeListWithoutMrl.begin() );
}
#endif
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned multiRefMPM [numMPMs];
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
PU::getIntraMPMs(pu, multiRefMPM);
for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
{
int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];
pu.multiRefIdx = multiRefIdx;
{
initIntraPatternChType(cu, pu.Y(), IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, false, pu));
}
for (int x = 0; x < numMPMs; x++)
{
uint32_t mode = multiRefMPM[x];
{
pu.intraDir[0] = mode;
if (useDPCMForFirstPassIntraEstimation(pu, mode))
{
encPredIntraDPCM(COMPONENT_Y, piOrg, piPred, mode);
}
else
{
predIntraAng(COMPONENT_Y, piPred, pu, IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, true, pu));
}
// use Hadamard transform here
Distortion sad = distParam.distFunc(distParam);
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
m_CABACEstimator->getCtx() = SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double)sad + (double)fracModeBits * sqrtLambdaForFirstPass;
updateCandList(mode, cost, uiRdModeList, CandCostList, extendRefList, multiRefIdx, numModesForFullRD);
}
}
}
CandCostList.resize(numModesForFullRD);
extendRefList.resize(numModesForFullRD);

Karsten Suehring
committed
if( m_pcEncCfg->getFastUDIUseMPMEnabled() )
{
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned uiPreds[numMPMs];

Karsten Suehring
committed

Karsten Suehring
committed
const int numCand = PU::getIntraMPMs( pu, uiPreds );
for( int j = 0; j < numCand; j++ )
{
bool mostProbableModeIncluded = false;
int mostProbableMode = uiPreds[j];
for( int i = 0; i < numModesForFullRD; i++ )
{
mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i] && extendRefList[i] == 0);

Karsten Suehring
committed
}
if( !mostProbableModeIncluded )
{

Karsten Suehring
committed
numModesForFullRD++;
uiRdModeList.push_back( mostProbableMode );
}
}
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
#if JVET_M0102_INTRA_SUBPARTITIONS
if( nOptionsForISP > 1 )
{
//we add the ISP MPMs to the list without mrl modes
m_rdModeListWithoutMrlHor = m_rdModeListWithoutMrl;
m_rdModeListWithoutMrlVer = m_rdModeListWithoutMrl;
static_vector<uint32_t, FAST_UDI_MAX_RDMODE_NUM>* listPointer;
for( int k = 1; k < nOptionsForISP; k++ )
{
cu.ispMode = ispOptions[k];
listPointer = &( cu.ispMode == HOR_INTRA_SUBPARTITIONS ? m_rdModeListWithoutMrlHor : m_rdModeListWithoutMrlVer );
const int numCandISP = PU::getIntraMPMs( pu, uiPreds );
for( int j = 0; j < numCandISP; j++ )
{
bool mostProbableModeIncluded = false;
int mostProbableMode = uiPreds[j];
for( int i = 0; i < listPointer->size(); i++ )
{
mostProbableModeIncluded |= ( mostProbableMode == listPointer->at( i ) );
}
if( !mostProbableModeIncluded )
{
listPointer->push_back( mostProbableMode );
}
}
}
cu.ispMode = NOT_INTRA_SUBPARTITIONS;
}
#endif

Karsten Suehring
committed
}
}
else
{
for( int i = 0; i < numModesForFullRD; i++ )
{
uiRdModeList.push_back( i );
}
}

Karsten Suehring
committed
if( emtUsageFlag == 1 )
{
// Store the modes to be checked with RD
m_savedNumRdModes[puIndex] = numModesForFullRD;
std::copy_n( uiRdModeList.begin(), numModesForFullRD, m_savedRdModeList[puIndex] );
std::copy_n(extendRefList.begin(), numModesForFullRD, m_savedExtendRefList[puIndex]);

Karsten Suehring
committed
}

Karsten Suehring
committed
}

Karsten Suehring
committed
else //emtUsage = 2 (here we potentially reduce the number of modes that will be full-RD checked)
{
if( isAllIntra && m_pcEncCfg->getFastIntraEMT() )
{
double thresholdSkipMode = 1.0 + 1.4 / sqrt( ( double ) ( width*height ) );

Karsten Suehring
committed
numModesForFullRD = 0;
// Skip checking the modes with much larger R-D cost than the best mode
for( int i = 0; i < m_savedNumRdModes[puIndex]; i++ )
{
if( m_modeCostStore[puIndex][i] <= thresholdSkipMode * m_bestModeCostStore[puIndex] )
{
uiRdModeList.push_back( m_savedRdModeList[puIndex][i] );
extendRefList.push_back(m_savedExtendRefList[puIndex][i]);

Karsten Suehring
committed
numModesForFullRD++;
}
}
}
else //this is necessary because we skip the candidates list calculation, since it was already obtained for the DCT-II. Now we load it
{
// Restore the modes to be checked with RD
numModesForFullRD = m_savedNumRdModes[puIndex];
uiRdModeList.resize( numModesForFullRD );
std::copy_n( m_savedRdModeList[puIndex], m_savedNumRdModes[puIndex], uiRdModeList.begin() );
CandCostList.resize(numModesForFullRD);
extendRefList.resize(numModesForFullRD);
std::copy_n(m_savedExtendRefList[puIndex], m_savedNumRdModes[puIndex], extendRefList.begin());

Karsten Suehring
committed
}
}

Karsten Suehring
committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
#if JVET_M0102_INTRA_SUBPARTITIONS
if( nOptionsForISP > 1 ) // we remove the non-MPMs from the ISP lists
{
static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeListCopyHor = m_rdModeListWithoutMrlHor;
m_rdModeListWithoutMrlHor.clear();
static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeListCopyVer = m_rdModeListWithoutMrlVer;
m_rdModeListWithoutMrlVer.clear();
static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > *listPointerCopy, *listPointer;
for( int ispOptionIdx = 1; ispOptionIdx < nOptionsForISP; ispOptionIdx++ )
{
cu.ispMode = ispOptions[ispOptionIdx];
//we get the mpm cand list
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned uiPreds[numMPMs];
pu.multiRefIdx = 0;
PU::getIntraMPMs( pu, uiPreds );
//we copy only the ISP MPMs
listPointerCopy = &( cu.ispMode == HOR_INTRA_SUBPARTITIONS ? uiRdModeListCopyHor : uiRdModeListCopyVer );
listPointer = &( cu.ispMode == HOR_INTRA_SUBPARTITIONS ? m_rdModeListWithoutMrlHor : m_rdModeListWithoutMrlVer );
for( int k = 0; k < listPointerCopy->size(); k++ )
{
for( int q = 0; q < numMPMs; q++ )
{
if( listPointerCopy->at( k ) == uiPreds[q] )
{
listPointer->push_back( listPointerCopy->at( k ) );
break;
}
}
}
}
cu.ispMode = NOT_INTRA_SUBPARTITIONS;
}
#endif

Karsten Suehring
committed
CHECK( numModesForFullRD != uiRdModeList.size(), "Inconsistent state!" );
// after this point, don't use numModesForFullRD
// PBINTRA fast
#if JVET_M0464_UNI_MTS
if( m_pcEncCfg->getUsePbIntraFast() && !cs.slice->isIntra() && uiRdModeList.size() < numModesAvailable )
#else
if( m_pcEncCfg->getUsePbIntraFast() && !cs.slice->isIntra() && uiRdModeList.size() < numModesAvailable && emtUsageFlag != 2 )

Karsten Suehring
committed
{
if( CandHadList.size() < 3 || CandHadList[2] > cs.interHad * PBINTRA_RATIO )
{
uiRdModeList.resize( std::min<size_t>( uiRdModeList.size(), 2 ) );
#if JVET_M0102_INTRA_SUBPARTITIONS
if( nOptionsForISP > 1 )
{
m_rdModeListWithoutMrlHor.resize( std::min<size_t>( m_rdModeListWithoutMrlHor.size(), 2 ) );
m_rdModeListWithoutMrlVer.resize( std::min<size_t>( m_rdModeListWithoutMrlVer.size(), 2 ) );
}
#endif

Karsten Suehring
committed
}
if( CandHadList.size() < 2 || CandHadList[1] > cs.interHad * PBINTRA_RATIO )
{
uiRdModeList.resize( std::min<size_t>( uiRdModeList.size(), 1 ) );
#if JVET_M0102_INTRA_SUBPARTITIONS
if( nOptionsForISP > 1 )
{
m_rdModeListWithoutMrlHor.resize( std::min<size_t>( m_rdModeListWithoutMrlHor.size(), 1 ) );
m_rdModeListWithoutMrlVer.resize( std::min<size_t>( m_rdModeListWithoutMrlVer.size(), 1 ) );
}
#endif

Karsten Suehring
committed
}
if( CandHadList.size() < 1 || CandHadList[0] > cs.interHad * PBINTRA_RATIO )
{
cs.dist = std::numeric_limits<Distortion>::max();
cs.interHad = 0;
//===== reset context models =====
m_CABACEstimator->getCtx() = SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

Karsten Suehring
committed
return;
}
}
//===== check modes (using r-d costs) =====
uint32_t uiBestPUMode = 0;

Karsten Suehring
committed
CodingStructure *csTemp = m_pTempCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
CodingStructure *csBest = m_pBestCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
csTemp->slice = cs.slice;
csBest->slice = cs.slice;
csTemp->initStructData();
csBest->initStructData();
// just to be sure
numModesForFullRD = ( int ) uiRdModeList.size();
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
#if JVET_M0102_INTRA_SUBPARTITIONS
PartSplit intraSubPartitionsProcOrder = TU_NO_ISP;
int bestNormalIntraModeIndex = -1;
uint8_t bestIspOption = NOT_INTRA_SUBPARTITIONS;
TUIntraSubPartitioner subTuPartitioner( partitioner );
#if !JVET_M0464_UNI_MTS
if ( !cu.ispMode && !cu.emtFlag )
{
m_modeCtrl->setEmtFirstPassNoIspCost( MAX_DOUBLE );
}
#endif
for( uint32_t ispOptionIdx = 0; ispOptionIdx < nOptionsForISP; ispOptionIdx++ )
{
cu.ispMode = ispOptions[ispOptionIdx];
int numModesForFullRDispOption = cu.ispMode == NOT_INTRA_SUBPARTITIONS ? numModesForFullRD : cu.ispMode == HOR_INTRA_SUBPARTITIONS ? (int)m_rdModeListWithoutMrlHor.size() : (int)m_rdModeListWithoutMrlVer.size();
for( uint32_t uiMode = 0; uiMode < numModesForFullRDispOption; uiMode++ )
{
// set luma prediction mode
uint32_t uiOrgMode = cu.ispMode == NOT_INTRA_SUBPARTITIONS ? uiRdModeList[uiMode] : cu.ispMode == HOR_INTRA_SUBPARTITIONS ? m_rdModeListWithoutMrlHor[uiMode] : m_rdModeListWithoutMrlVer[uiMode];
pu.intraDir[0] = uiOrgMode;
int multiRefIdx = 0;
pu.multiRefIdx = multiRefIdx;
if( cu.ispMode )
{
intraSubPartitionsProcOrder = CU::getISPType( cu, COMPONENT_Y );
bool tuIsDividedInRows = CU::divideTuInRows( cu );
if( m_intraModeDiagRatio.at( bestNormalIntraModeIndex ) > 1.25 )
{
continue;
}
if( uiOrgMode <= DC_IDX )
{
if( ( m_intraModeHorVerRatio.at( bestNormalIntraModeIndex ) > 1.25 && tuIsDividedInRows ) || ( m_intraModeHorVerRatio.at( bestNormalIntraModeIndex ) < 0.8 && !tuIsDividedInRows ) )
{
continue;
}
}
else
{
if( ( m_intraModeHorVerRatio.at( bestNormalIntraModeIndex ) > 1.25 && tuIsDividedInRows ) || ( m_intraModeHorVerRatio.at( bestNormalIntraModeIndex ) < 0.8 && !tuIsDividedInRows ) )
{
continue;
}
}
}
else
{
multiRefIdx = extendRefList[uiMode];
pu.multiRefIdx = multiRefIdx;
CHECK( pu.multiRefIdx && ( pu.intraDir[0] == DC_IDX || pu.intraDir[0] == PLANAR_IDX ), "ERL" );
}
#else

Karsten Suehring
committed
for (uint32_t uiMode = 0; uiMode < numModesForFullRD; uiMode++)
{
// set luma prediction mode
uint32_t uiOrgMode = uiRdModeList[uiMode];
pu.intraDir[0] = uiOrgMode;
int multiRefIdx = extendRefList[uiMode];
pu.multiRefIdx = multiRefIdx;
CHECK(pu.multiRefIdx && (pu.intraDir[0] == DC_IDX || pu.intraDir[0] == PLANAR_IDX), "ERL");

Karsten Suehring
committed
// set context models
m_CABACEstimator->getCtx() = ctxStart;
// determine residual for partition
cs.initSubStructure( *csTemp, partitioner.chType, cs.area, true );
#if JVET_M0102_INTRA_SUBPARTITIONS
if( cu.ispMode )
{
xRecurIntraCodingLumaQT( *csTemp, subTuPartitioner, bestCurrentCost, 0, intraSubPartitionsProcOrder );
}
else
{
xRecurIntraCodingLumaQT( *csTemp, partitioner, MAX_DOUBLE, -1 );
}
if( cu.ispMode && !csTemp->cus[0]->firstTU->cbf[COMPONENT_Y] )
{
csTemp->cost = MAX_DOUBLE;
}
#else

Karsten Suehring
committed
xRecurIntraCodingLumaQT( *csTemp, partitioner );

Karsten Suehring
committed
#if JVET_M0102_INTRA_SUBPARTITIONS
if (emtUsageFlag == 1 && m_pcEncCfg->getFastIntraEMT() && !cu.ispMode)
#else

Karsten Suehring
committed
if( emtUsageFlag == 1 && m_pcEncCfg->getFastIntraEMT() )

Karsten Suehring
committed
{
m_modeCostStore[puIndex][uiMode] = csTemp->cost; //cs.cost;
}

Karsten Suehring
committed
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraCost T %f (%d) \n", csTemp->cost, uiOrgMode );
// check r-d cost
if( csTemp->cost < csBest->cost )
{
std::swap( csTemp, csBest );
uiBestPUMode = uiOrgMode;
#if JVET_M0102_INTRA_SUBPARTITIONS
bestIspOption = cu.ispMode;
#endif
#if JVET_M0102_INTRA_SUBPARTITIONS
if (emtUsageFlag == 1 && m_pcEncCfg->getFastIntraEMT() && !cu.ispMode)
#else

Karsten Suehring
committed
if( ( emtUsageFlag == 1 ) && m_pcEncCfg->getFastIntraEMT() )

Karsten Suehring
committed
{
m_bestModeCostStore[puIndex] = csBest->cost; //cs.cost;
}
#endif
#if JVET_M0102_INTRA_SUBPARTITIONS
if( csBest->cost < bestCurrentCost )
{
bestCurrentCost = csBest->cost;
}
if( !cu.ispMode )
{
bestNormalIntraModeIndex = uiMode;
}

Karsten Suehring
committed
}
csTemp->releaseIntermediateData();
} // Mode loop
#if JVET_M0102_INTRA_SUBPARTITIONS
#if !JVET_M0464_UNI_MTS
if (!cu.ispMode && !cu.emtFlag)
{
m_modeCtrl->setEmtFirstPassNoIspCost(csBest->cost);
}
#endif
}
cu.ispMode = bestIspOption;
#endif

Karsten Suehring
committed
#if JVET_M0427_INLOOP_RESHAPER
cs.useSubStructure(*csBest, partitioner.chType, pu.singleChan(CHANNEL_TYPE_LUMA), true, true, keepResi, keepResi);
#else

Karsten Suehring
committed
cs.useSubStructure( *csBest, partitioner.chType, pu.singleChan( CHANNEL_TYPE_LUMA ), KEEP_PRED_AND_RESI_SIGNALS, true, keepResi, keepResi );

Karsten Suehring
committed
csBest->releaseIntermediateData();
//=== update PU data ====
pu.intraDir[0] = uiBestPUMode;

Karsten Suehring
committed
}
//===== reset context models =====
m_CABACEstimator->getCtx() = ctxStart;
}
#if JVET_M0102_INTRA_SUBPARTITIONS
void IntraSearch::estIntraPredChromaQT( CodingUnit &cu, Partitioner &partitioner, const double maxCostAllowed )
#else

Karsten Suehring
committed
void IntraSearch::estIntraPredChromaQT(CodingUnit &cu, Partitioner &partitioner)

Karsten Suehring
committed
{
const ChromaFormat format = cu.chromaFormat;
const uint32_t numberValidComponents = getNumberValidComponents(format);
CodingStructure &cs = *cu.cs;
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
cs.setDecomp( cs.area.Cb(), false );
#if JVET_M0102_INTRA_SUBPARTITIONS
double bestCostSoFar = maxCostAllowed;