Newer
Older
#endif
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraHAD: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, uiMode);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiMode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiMode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
}
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
#if JVET_AC0105_DIRECTIONAL_PLANAR
bool testDirPlanar = isLuma(partitioner.chType);
if (testDirPlanar)
{
for (int dirPlanarModeIdx = 0; dirPlanarModeIdx < 2; dirPlanarModeIdx++)
{
cu.sgpm = false;
cu.ispMode = 0;
cu.tmpFlag = false;
cu.tmrlFlag = false;
pu.multiRefIdx = 0;
cu.mipFlag = false;
pu.intraDir[0] = PLANAR_IDX;
cu.plIdx = dirPlanarModeIdx + 1;
initPredIntraParams(pu, pu.Y(), sps);
#if JVET_AB0157_INTRA_FUSION
predIntraAng(COMPONENT_Y, piPred, pu, false);
#else
predIntraAng(COMPONENT_Y, piPred, pu);
#endif
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
Distortion minSadHad = std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
#endif
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been
// pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFlag, ctxStartTpmFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx(Ctx::TimdFlag, ctxStartTimdFlag);
#endif
#if JVET_AB0155_SGPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::SgpmFlag, ctxStartSgpmFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
#if JVET_AB0157_TMRL
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmrlDerive, ctxStartTmrlDerive);
#endif
uint64_t fracModeBits = xFracModeBitsIntra(pu, PLANAR_IDX, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - (double)minSadHad + (double)sadCost);
#endif
updateCandList(
ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, dirPlanarModeIdx ? PL_VER_IDX : PL_HOR_IDX), cost,
uiRdModeList, CandCostList, numModesForFullRD);
updateCandList(
ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, dirPlanarModeIdx ? PL_VER_IDX : PL_HOR_IDX),
double(minSadHad), uiHadModeList, CandHadList, numHadCand);
dirPlanarCostList[dirPlanarModeIdx] = cost;
}
}
cu.plIdx = 0;
#endif
if (!sps.getUseMIP() && LFNSTSaveFlag)
{
// save found best modes
m_uiSavedNumRdModesLFNST = numModesForFullRD;
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
LFNSTSaveFlag = false;
}
} // NSSTFlag
if (!sps.getUseMIP() && LFNSTLoadFlag)
// restore saved modes
numModesForFullRD = m_uiSavedNumRdModesLFNST;
uiRdModeList = m_uiSavedRdModeListLFNST;
CandCostList = m_dSavedModeCostLFNST;
// PBINTRA fast
uiHadModeList = m_uiSavedHadModeListLFNST;
CandHadList = m_dSavedHadListLFNST;
} // !LFNSTFlag
if (!(sps.getUseMIP() && LFNSTLoadFlag))
{
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> parentCandList = uiRdModeList;
// Second round of SATD for extended Angular modes
for (int modeIdx = 0; modeIdx < numModesForFullRD; modeIdx++)
{
unsigned parentMode = parentCandList[modeIdx].modeId;
if (parentMode > (DC_IDX + 1) && parentMode < (NUM_LUMA_MODE - 1))
{
for (int subModeIdx = -1; subModeIdx <= 1; subModeIdx += 2)
{
unsigned mode = parentMode + subModeIdx;
if (!bSatdChecked[mode])
{
pu.intraDir[0] = mode;
initPredIntraParams(pu, pu.Y(), sps);
#if JVET_AB0157_INTRA_FUSION
predIntraAng(COMPONENT_Y, piPred, pu, false);
#else
#if JVET_AB0155_SGPM
if (testSgpm && SGPMSaveFlag && sgpmNeededMode[mode])
{
PelBuf predBuf(m_intraPredBuf[mode], tmpArea);
predBuf.copyFrom(piPred);
m_intraModeReady[mode] = 1;
}
#endif
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
Distortion minSadHad = std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
#endif
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been
// pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
#if JVET_AB0155_SGPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::SgpmFlag, ctxStartSgpmFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
#if JVET_AB0157_TMRL
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmrlDerive, ctxStartTmrlDerive);
#endif
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - (double)minSadHad + (double)sadCost);
#endif
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, mode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, mode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
bSatdChecked[mode] = true;
}
}
}
}
if (saveDataForISP)
// we save the regular intra modes list
m_ispCandListHor = uiRdModeList;
}
#if !JVET_AB0157_TMRL || JVET_AD0082_TMRL_CONFIG
#if SECONDARY_MPM
const int numMPMs = NUM_PRIMARY_MOST_PROBABLE_MODES;
uint8_t* multiRefMPM = m_mpmList;
#else
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned multiRefMPM[numMPMs];
#if !JVET_AD0082_TMRL_CONFIG
#if JVET_AD0082_TMRL_CONFIG
cu.tmrlFlag = true;
#endif
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
for (auto multiRefIdx : EXT_REF_LINE_IDX)
{
pu.multiRefIdx = multiRefIdx;
initIntraPatternChType(cu, pu.Y(), true);
for (auto i = 0; i < MRL_LIST_SIZE; i++)
{
if (cu.tmrlList[i].multiRefIdx != multiRefIdx)
{
continue;
}
pu.intraDir[0] = cu.tmrlList[i].intraDir;
cu.tmrlListIdx = i;
uint32_t uiMode = i + MAX_REF_LINE_IDX;
initPredIntraParams(pu, pu.Y(), *(pu.cs->sps));
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
Distortion minSadHad = std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
#endif
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFlag, ctxStartTpmFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx(Ctx::TimdFlag, ctxStartTimdFlag);
#endif
#if JVET_AB0155_SGPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::SgpmFlag, ctxStartSgpmFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
#if JVET_AB0157_TMRL
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmrlDerive, ctxStartTmrlDerive);
#endif
uint64_t fracModeBits = xFracModeBitsIntra(pu, pu.intraDir[0], CHANNEL_TYPE_LUMA);
double cost = (double)minSadHad + (double)fracModeBits * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - (double)minSadHad + (double)sadCost);
#endif
updateCandList(ModeInfo(false, false, uiMode, NOT_INTRA_SUBPARTITIONS, 0), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, uiMode, NOT_INTRA_SUBPARTITIONS, 0), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
#if JVET_AB0157_TMRL
tmrlCostList[i] = cost;
#endif
}
}
#if JVET_AD0082_TMRL_CONFIG
cu.tmrlFlag = false;
#endif
#endif
#if !JVET_AB0157_TMRL || JVET_AD0082_TMRL_CONFIG
#if JVET_AD0082_TMRL_CONFIG
else
{
#endif
for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
{
int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];
#if JVET_AB0157_INTRA_FUSION && JVET_AB0155_SGPM
initIntraPatternChType(cu, pu.Y(), true, 0, false);
#elif JVET_AB0157_INTRA_FUSION
initIntraPatternChType(cu, pu.Y(), true, false);
#else
}
for (int x = 1; x < numMPMs; x++)
{
uint32_t mode = multiRefMPM[x];
{
pu.intraDir[0] = mode;
initPredIntraParams(pu, pu.Y(), sps);
#if JVET_AB0157_INTRA_FUSION
predIntraAng(COMPONENT_Y, piPred, pu, false);
#else
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
Distortion minSadHad = std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
#if JVET_AB0155_SGPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::SgpmFlag, ctxStartSgpmFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - (double)minSadHad + (double)sadCost);
#endif
updateCandList(ModeInfo(false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, mode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, mode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
}
}
}
#if JVET_AD0082_TMRL_CONFIG
}
#endif
CHECKD(uiRdModeList.size() != numModesForFullRD, "Error: RD mode list size");
#if JVET_V0130_INTRA_TMP && JVET_AB0130_ITMP_SAMPLING
// derive TPM candidate using hadamard
if (testTpm)
{
cu.tmpFlag = true;
cu.mipFlag = false;
pu.multiRefIdx = 0;
#if JVET_AD0086_ENHANCED_INTRA_TMP
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> uiRdModeListTmp;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandCostListTmp;
#else
int foundCandiNum = 0;
bool bsuccessfull = 0;
CodingUnit cuCopy = cu;
#if JVET_W0069_TMP_BOUNDARY
RefTemplateType templateType = getRefTemplateType(cuCopy, cuCopy.blocks[COMPONENT_Y]);
if (templateType != NO_TEMPLATE)
#else
if (isRefTemplateAvailable(cuCopy, cuCopy.blocks[COMPONENT_Y]))
#endif
{
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
#if JVET_AD0086_ENHANCED_INTRA_TMP
cu.tmpIsSubPel = 0;
cu.tmpSubPelIdx = 0;
for(int tmpFusionFlag = 0; tmpFusionFlag <= 1; tmpFusionFlag++)
{
cu.tmpFusionFlag = tmpFusionFlag ? true: false;
for (int tmpFlmFlag = 0; tmpFlmFlag <= 1; tmpFlmFlag++)
{
cu.tmpFlmFlag = tmpFlmFlag ? true: false;
if(tmpFlmFlag && tmpFusionFlag)
{
continue;
}
int idxNum = cu.tmpFusionFlag ? TMP_GROUP_IDX << 1 : cu.tmpNumCand;
for (int tmpIdx = 0; tmpIdx < idxNum; tmpIdx++)
{
if(cu.tmpFusionFlag && !cu.tmpFusionInfo[tmpIdx].bValid)
{
continue;
}
cu.tmpIdx = tmpIdx;
int placeHolder;
generateTMPrediction(piPred.buf, piPred.stride, placeHolder, pu, false);
xGenerateTmpFlmPred(piPred, pu.lwidth(), pu.lheight(), templateType, pu.cu, false);
xTMPFusionApplyModel(piPred, pu.lwidth(), pu.lheight(), templateType, pu.cu, false);
#else
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
#if JVET_W0069_TMP_BOUNDARY
#if TMP_FAST_ENC
bsuccessfull = generateTMPrediction(piPred.buf, piPred.stride, pu.Y(), foundCandiNum, pu.cu);
#else
getTargetTemplate(&cuCopy, pu.lwidth(), pu.lheight(), templateType);
candidateSearchIntra(&cuCopy, pu.lwidth(), pu.lheight(), templateType);
bsuccessfull = generateTMPrediction(piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum);
#endif
#else
#if TMP_FAST_ENC
bsuccessfull = generateTMPrediction(piPred.buf, piPred.stride, pu.Y(), foundCandiNum, pu.cu);
#else
getTargetTemplate(&cuCopy, pu.lwidth(), pu.lheight());
candidateSearchIntra(&cuCopy, pu.lwidth(), pu.lheight());
bsuccessfull = generateTMPrediction(piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum);
#endif
#endif
}
#if JVET_W0069_TMP_BOUNDARY
else
{
foundCandiNum = 1;
#if JVET_AC0115_INTRA_TMP_DIMD_MTS_LFNST
bsuccessfull = generateTmDcPrediction(piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), 1 << (cuCopy.cs->sps->getBitDepth(CHANNEL_TYPE_LUMA) - 1), pu.cu);
#else
bsuccessfull = generateTmDcPrediction(piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), 1 << (cuCopy.cs->sps->getBitDepth(CHANNEL_TYPE_LUMA) - 1));
#endif
}
#endif
if (bsuccessfull && foundCandiNum >= 1)
{
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
Distortion minSadHad = std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFlag, ctxStartTpmFlag);
#if JVET_AD0086_ENHANCED_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpIdx, ctxStartTpmIdx);
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFusion, ctxStartTpmFusionFlag);
#endif
uint64_t fracModeBits = xFracModeBitsIntra(pu, 0, CHANNEL_TYPE_LUMA);
double cost = double(minSadHad) + double(fracModeBits) * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - double(minSadHad) + (double)sadCost);
#endif
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraTPM: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, 0);
#if JVET_AD0086_ENHANCED_INTRA_TMP
updateCandList(ModeInfo(0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1, cu.tmpIdx, cu.tmpFusionFlag, cu.tmpFlmFlag, cu.tmpIsSubPel, cu.tmpSubPelIdx), cost, uiRdModeList, CandCostList, numModesForFullRD);
updateCandList(ModeInfo(0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1, cu.tmpIdx, cu.tmpFusionFlag, cu.tmpFlmFlag, cu.tmpIsSubPel, cu.tmpSubPelIdx), 0.8 * double(minSadHad), uiHadModeList, CandHadList, numHadCand);
}
#else
updateCandList(ModeInfo(0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1), cost, uiRdModeList, CandCostList, numModesForFullRD);
updateCandList(ModeInfo(0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1), 0.8 * double(minSadHad), uiHadModeList, CandHadList, numHadCand);
#endif
#if JVET_AD0086_ENHANCED_INTRA_TMP
//record the best full-pel candidates
if(!tmpFlmFlag&&!tmpFusionFlag)
{
for(int idxInList=0; idxInList < uiRdModeList.size(); idxInList++)
{
if(uiRdModeList[idxInList].tmpFlag){
updateCandList(uiRdModeList[idxInList], CandCostList[idxInList], uiRdModeListTmp, CandCostListTmp, numModesForFullRD);
}
}
}
}
}
//fractional BV
cu.tmpFusionFlag = false;
cu.tmpFlmFlag = false;
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
for(int idxInList=0; idxInList < uiRdModeListTmp.size(); idxInList++)
{
cu.tmpIdx = uiRdModeListTmp[idxInList].tmpIdx;
xPadForInterpolation(&cu);
for(int tmpIsSubPel = 1; tmpIsSubPel < 4; tmpIsSubPel++)
{
for (int idx = 0; idx < TMP_MAX_SUBPEL_DIR; idx++)
{
cu.tmpIsSubPel = tmpIsSubPel;
cu.tmpSubPelIdx = idx;
int placeHolder;
generateTMPrediction(piPred.buf, piPred.stride, placeHolder, pu, false);
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFlag, ctxStartTpmFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpIdx, ctxStartTpmIdx);
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFusion, ctxStartTpmFusionFlag);
uint64_t fracModeBits = xFracModeBitsIntra(pu, 0, CHANNEL_TYPE_LUMA);
double cost = double(minSadHad) + double(fracModeBits) * sqrtLambdaForFirstPass;
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraTPM: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, 0);
updateCandList(ModeInfo(0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1, cu.tmpIdx, cu.tmpFusionFlag, cu.tmpFlmFlag, cu.tmpIsSubPel, cu.tmpSubPelIdx), cost, uiRdModeList, CandCostList, numModesForFullRD);
updateCandList(ModeInfo(0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1, cu.tmpIdx, cu.tmpFusionFlag, cu.tmpFlmFlag, cu.tmpIsSubPel, cu.tmpSubPelIdx), 0.8 * double(minSadHad), uiHadModeList, CandHadList, numHadCand);
}
}
}
#endif
#if JVET_AD0086_ENHANCED_INTRA_TMP
cu.tmpFlag = 0;
cu.tmpFusionFlag = false;
cu.tmpFlmFlag = false;
cu.tmpIsSubPel = 0;
cu.tmpSubPelIdx = 0;
cu.tmpIdx = 0;
#endif
}
#endif
if (LFNSTSaveFlag && testMip
&& !allowLfnstWithMip(cu.firstPU->lumaSize())) // save a different set for the next run
{
// save found best modes
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
m_uiSavedNumRdModesLFNST =
g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];
m_uiSavedRdModeListLFNST.resize(m_uiSavedNumRdModesLFNST);
m_dSavedModeCostLFNST.resize(m_uiSavedNumRdModesLFNST);
// PBINTRA fast
m_uiSavedHadModeListLFNST.resize(3);
m_dSavedHadListLFNST.resize(3);
LFNSTSaveFlag = false;
}
#if JVET_V0130_INTRA_TMP && !JVET_AB0130_ITMP_SAMPLING
// derive TPM candidate using hadamard
if( testTpm )
{
cu.tmpFlag = true;
cu.mipFlag = false;
pu.multiRefIdx = 0;
#if JVET_AB0157_TMRL
cu.tmrlFlag = false;
#endif
int foundCandiNum = 0;
bool bsuccessfull = 0;
CodingUnit cu_cpy = cu;
RefTemplateType templateType = getRefTemplateType( cu_cpy, cu_cpy.blocks[COMPONENT_Y] );
if( templateType != NO_TEMPLATE )
if( isRefTemplateAvailable( cu_cpy, cu_cpy.blocks[COMPONENT_Y] ) )
getTargetTemplate( &cu_cpy, pu.lwidth(), pu.lheight(), templateType );
candidateSearchIntra( &cu_cpy, pu.lwidth(), pu.lheight(), templateType );
bsuccessfull = generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
getTargetTemplate( &cu_cpy, pu.lwidth(), pu.lheight() );
candidateSearchIntra( &cu_cpy, pu.lwidth(), pu.lheight() );
bsuccessfull = generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
bsuccessfull = generateTmDcPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), 1 << (cu_cpy.cs->sps->getBitDepth( CHANNEL_TYPE_LUMA ) - 1) );
if( bsuccessfull && foundCandiNum >= 1 )
{
Distortion minSadHad =
std::min( distParamSad.distFunc( distParamSad ) * 2, distParamHad.distFunc( distParamHad ) );
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
uint64_t fracModeBits = xFracModeBitsIntra( pu, 0, CHANNEL_TYPE_LUMA );
double cost = double( minSadHad ) + double( fracModeBits ) * sqrtLambdaForFirstPass;
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraTPM: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, 0 );
updateCandList( ModeInfo( 0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1 ), cost, uiRdModeList, CandCostList, numModesForFullRD );
updateCandList( ModeInfo( 0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1 ), 0.8 * double( minSadHad ), uiHadModeList, CandHadList, numHadCand );
}
}
//*** Derive MIP candidates using Hadamard
if (testMip && !supportedMipBlkSize)
{
// avoid estimation for unsupported blk sizes
const int transpOff = getNumModesMip(pu.Y());
const int numModesFull = (transpOff << 1);
for (uint32_t uiModeFull = 0; uiModeFull < numModesFull; uiModeFull++)
{
const bool isTransposed = (uiModeFull >= transpOff ? true : false);
const uint32_t uiMode = (isTransposed ? uiModeFull - transpOff : uiModeFull);
numModesForFullRD++;
uiRdModeList.push_back(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode));
CandCostList.push_back(0);
}
}
else if (testMip)
{
#if JVET_AB0157_TMRL
cu.tmrlFlag = false;
#endif
double mipHadCost[MAX_NUM_MIP_MODE] = { MAX_DOUBLE };
#if JVET_AB0157_INTRA_FUSION && JVET_AB0155_SGPM
initIntraPatternChType(cu, pu.Y(), false, 0, false);
#elif JVET_AB0157_INTRA_FUSION
initIntraPatternChType(cu, pu.Y(), false, false);
#else
const int transpOff = getNumModesMip(pu.Y());
const int numModesFull = (transpOff << 1);
for (uint32_t uiModeFull = 0; uiModeFull < numModesFull; uiModeFull++)
{
const bool isTransposed = (uiModeFull >= transpOff ? true : false);
const uint32_t uiMode = (isTransposed ? uiModeFull - transpOff : uiModeFull);
pu.mipTransposedFlag = isTransposed;
pu.intraDir[CHANNEL_TYPE_LUMA] = uiMode;
predIntraMip(COMPONENT_Y, piPred, pu);
// Use the min between SAD and HAD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
Distortion minSadHad = std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);

Karsten Suehring
committed
double cost = double(minSadHad) + double(fracModeBits) * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - double(minSadHad) + (double)sadCost);
#endif
mipHadCost[uiModeFull] = cost;
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraMIP: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost,
uiModeFull);

Karsten Suehring
committed
updateCandList(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode), cost, uiRdModeList,
CandCostList, numModesForFullRD + 1);
updateCandList(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode),
0.8 * double(minSadHad), uiHadModeList, CandHadList, numHadCand);
}

Karsten Suehring
committed
const double thresholdHadCost = 1.0 + 1.4 / sqrt((double) (pu.lwidth() * pu.lheight()));
reduceHadCandList(uiRdModeList, CandCostList, numModesForFullRD, thresholdHadCost, mipHadCost, pu,
fastMip
#if JVET_AB0157_TMRL
, tmrlCostList
#endif
#if JVET_AC0105_DIRECTIONAL_PLANAR
, dirPlanarCostList

Karsten Suehring
committed
}

Karsten Suehring
committed
{
// save found best modes
m_uiSavedNumRdModesLFNST = numModesForFullRD;
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
LFNSTSaveFlag = false;

Karsten Suehring
committed
}
}
else // if( sps.getUseMIP() && LFNSTLoadFlag)
{
// restore saved modes
numModesForFullRD = m_uiSavedNumRdModesLFNST;
uiRdModeList = m_uiSavedRdModeListLFNST;
CandCostList = m_dSavedModeCostLFNST;
// PBINTRA fast
uiHadModeList = m_uiSavedHadModeListLFNST;
CandHadList = m_dSavedHadListLFNST;
}
#if JVET_AB0155_SGPM
if (testSgpm)
{
if (SGPMSaveFlag)
{
m_uiSavedRdModeListSGPM.clear();
m_dSavedModeCostSGPM.clear();
m_uiSavedHadModeListSGPM.clear();
m_dSavedHadListSGPM.clear();
#if JVET_V0130_INTRA_TMP
#if JVET_AB0157_INTRA_FUSION
initIntraPatternChType(cu, pu.Y(), true, 0, false);
#else
// get single mode predictions
for (int sgpmIdx = 0; sgpmIdx < SGPM_NUM; sgpmIdx++)
{
int sgpmMode[2];
sgpmMode[0] = sgpmInfoList[sgpmIdx].sgpmMode0;
sgpmMode[1] = sgpmInfoList[sgpmIdx].sgpmMode1;
for (int idxIn2 = 0; idxIn2 < 2; idxIn2++)
{
if (!m_intraModeReady[sgpmMode[idxIn2]])
{
pu.intraDir[0] = sgpmMode[idxIn2];
initPredIntraParams(pu, pu.Y(), sps);
#if JVET_AB0157_INTRA_FUSION
predIntraAng(COMPONENT_Y, piPred, pu, false);
#else
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
PelBuf predBuf(m_intraPredBuf[sgpmMode[idxIn2]], tmpArea);
predBuf.copyFrom(piPred);
m_intraModeReady[sgpmMode[idxIn2]] = 1;
}
}
}
cu.sgpm = true;
// frac bits calculate once because all are the same
cu.sgpmIdx = 0;
cu.sgpmSplitDir = sgpmInfoList[0].sgpmSplitDir;
cu.sgpmMode0 = sgpmInfoList[0].sgpmMode0;
cu.sgpmMode1 = sgpmInfoList[0].sgpmMode1;
pu.intraDir[0] = cu.sgpmMode0;
pu.intraDir1[0] = cu.sgpmMode1;
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmpFlag, ctxStartTpmFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx(Ctx::TimdFlag, ctxStartTimdFlag);
#endif
#if JVET_AB0155_SGPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::SgpmFlag, ctxStartSgpmFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
#if JVET_AB0157_TMRL
m_CABACEstimator->getCtx() = SubCtx(Ctx::TmrlDerive, ctxStartTmrlDerive);
#endif
uint64_t fracModeBits = xFracModeBitsIntra(pu, 0, CHANNEL_TYPE_LUMA);
for (int sgpmIdx = 0; sgpmIdx < SGPM_NUM; sgpmIdx++)
{
int sgpmMode0 = sgpmInfoList[sgpmIdx].sgpmMode0;
int sgpmMode1 = sgpmInfoList[sgpmIdx].sgpmMode1;
PelBuf src0(m_intraPredBuf[sgpmMode0], tmpArea);
PelBuf src1(m_intraPredBuf[sgpmMode1], tmpArea);
m_if.m_weightedSgpm(pu, width, height, COMPONENT_Y, sgpmInfoList[sgpmIdx].sgpmSplitDir, piPred, src0, src1);
PelBuf predBuf(m_sgpmPredBuf[sgpmIdx], tmpArea);
predBuf.copyFrom(piPred);
Distortion minSadHad = 0;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
Distortion sadCost = distParamSad.distFunc(distParamSad);
minSadHad += std::min(sadCost * 2, distParamHad.distFunc(distParamHad));
#else
minSadHad += std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
#endif
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
#if JVET_AD0208_IBC_ADAPT_FOR_CAM_CAPTURED_CONTENTS
m_bestIntraSADCost = std::min(m_bestIntraSADCost, cost - (double)minSadHad + (double)sadCost);
#endif
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, SGPM_IDX,
#if JVET_V0130_INTRA_TMP
false, //tmpFlag
#endif
#if JVET_AD0086_ENHANCED_INTRA_TMP
0, false, false, 0, 0,
#endif
true, sgpmInfoList[sgpmIdx].sgpmSplitDir, sgpmInfoList[sgpmIdx].sgpmMode0,
sgpmInfoList[sgpmIdx].sgpmMode1, sgpmIdx),
cost, m_uiSavedRdModeListSGPM, m_dSavedModeCostSGPM, SGPM_NUM);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, SGPM_IDX,
#if JVET_V0130_INTRA_TMP
false, //tmpFlag
#endif
#if JVET_AD0086_ENHANCED_INTRA_TMP
0, false, false, 0, 0,
#endif
true, sgpmInfoList[sgpmIdx].sgpmSplitDir, sgpmInfoList[sgpmIdx].sgpmMode0,
sgpmInfoList[sgpmIdx].sgpmMode1, sgpmIdx),
double(minSadHad), m_uiSavedHadModeListSGPM, m_dSavedHadListSGPM, SGPM_NUM);
}
cu.sgpm = false;
}
int updateNum = std::min<int>( (numModesForFullRD + 1) / 2, (int)m_uiSavedRdModeListSGPM.size() );
for (auto listIdx = 0; listIdx < updateNum; listIdx++)
{
updateCandList(m_uiSavedRdModeListSGPM[listIdx], m_dSavedModeCostSGPM[listIdx], uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(m_uiSavedHadModeListSGPM[listIdx], m_dSavedHadListSGPM[listIdx], uiHadModeList,
CandHadList, numHadCand);
}
}
#endif
#if SECONDARY_MPM
auto uiPreds = m_mpmList;
#else
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned uiPreds[numMPMs];
#if JVET_AB0157_TMRL
cu.tmrlFlag = false;;
#endif
#if SECONDARY_MPM
int numCand = m_mpmListSize;
numCand = (numCand > 2) ? 2 : numCand;
#else
const int numCand = PU::getIntraMPMs(pu, uiPreds);
for (int j = 0; j < numCand; j++)
{
bool mostProbableModeIncluded = false;
ModeInfo mostProbableMode( false, false, 0, NOT_INTRA_SUBPARTITIONS, uiPreds[j] );
mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i]);
}
if (!mostProbableModeIncluded)
{
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
numModesForFullRD++;
uiRdModeList.push_back(mostProbableMode);
CandCostList.push_back(0);
}
}
if (saveDataForISP)
{
// we add the MPMs to the list that contains only regular intra modes
for (int j = 0; j < numCand; j++)
{
bool mostProbableModeIncluded = false;
ModeInfo mostProbableMode(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiPreds[j]);
for (int i = 0; i < m_ispCandListHor.size(); i++)
{
mostProbableModeIncluded |= (mostProbableMode == m_ispCandListHor[i]);
}
if (!mostProbableModeIncluded)
{
m_ispCandListHor.push_back(mostProbableMode);
}
else
{
THROW("Full search not supported for MIP");
}
if (sps.getUseLFNST() && mtsUsageFlag == 1)
{
// Store the modes to be checked with RD
m_savedNumRdModes[lfnstIdx] = numModesForFullRD;
std::copy_n(uiRdModeList.begin(), numModesForFullRD, m_savedRdModeList[lfnstIdx]);
}

Karsten Suehring
committed
}
else // mtsUsage = 2 (here we potentially reduce the number of modes that will be full-RD checked)
if ((m_pcEncCfg->getUseFastLFNST() || !cu.slice->isIntra()) && m_bestModeCostValid[lfnstIdx])
{
numModesForFullRD = 0;
#if JVET_W0103_INTRA_MTS
double thresholdSkipMode = 1.0 + ((cu.lfnstIdx > 0) ? 0.1 : 0.8) * (1.4 / sqrt((double)(width * height)));
std::vector<std::pair<ModeInfo, double>> modeInfoWithDCT2Cost(m_savedNumRdModes[0]);
for (int i = 0; i < m_savedNumRdModes[0]; i++)
{
modeInfoWithDCT2Cost[i] = { m_savedRdModeList[0][i], m_modeCostStore[0][i] };
std::stable_sort(modeInfoWithDCT2Cost.begin(), modeInfoWithDCT2Cost.end(), [](const std::pair<ModeInfo, double> & l, const std::pair<ModeInfo, double> & r) {return l.second < r.second; });
// **Reorder the modes** and skip checking the modes with much larger R-D cost than the best mode
for (int i = 0; i < m_savedNumRdModes[0]; i++)
{
if (modeInfoWithDCT2Cost[i].second <= thresholdSkipMode * modeInfoWithDCT2Cost[0].second)
uiRdModeList.push_back(modeInfoWithDCT2Cost[i].first);
numModesForFullRD++;
}
}
#else
double thresholdSkipMode = 1.0 + ((cu.lfnstIdx > 0) ? 0.1 : 1.0) * (1.4 / sqrt((double) (width * height)));
// Skip checking the modes with much larger R-D cost than the best mode
for (int i = 0; i < m_savedNumRdModes[lfnstIdx]; i++)
if (m_modeCostStore[lfnstIdx][i] <= thresholdSkipMode * m_bestModeCostStore[lfnstIdx])
{
uiRdModeList.push_back(m_savedRdModeList[lfnstIdx][i]);
numModesForFullRD++;
}
else // this is necessary because we skip the candidates list calculation, since it was already obtained for
// the DCT-II. Now we load it
{
// Restore the modes to be checked with RD
numModesForFullRD = m_savedNumRdModes[lfnstIdx];
uiRdModeList.resize(numModesForFullRD);
std::copy_n(m_savedRdModeList[lfnstIdx], m_savedNumRdModes[lfnstIdx], uiRdModeList.begin());
CandCostList.resize(numModesForFullRD);
}
#if ENABLE_DIMD
bool isDimdValid = cu.slice->getSPS()->getUseDimd();
if (isDimdValid)
{
cu.dimd = false;
ModeInfo m = ModeInfo( false, false, 0, NOT_INTRA_SUBPARTITIONS, DIMD_IDX );
uiRdModeList.push_back(m);