Skip to content
Snippets Groups Projects
IntraSearch.cpp 67.7 KiB
Newer Older
  • Learn to ignore specific revisions
  •           uiBestDist = uiDist;
              uiBestMode = chromaIntraMode;
            }
          }
    
          for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
          {
            const CompArea &area = pu.blocks[i];
    
            cs.getRecoBuf         ( area ).copyFrom( saveCS.getRecoBuf( area ) );
    #if KEEP_PRED_AND_RESI_SIGNALS
            cs.getPredBuf         ( area ).copyFrom( saveCS.getPredBuf( area ) );
            cs.getResiBuf         ( area ).copyFrom( saveCS.getResiBuf( area ) );
    #endif
            cs.picture->getRecoBuf( area ).copyFrom( cs.    getRecoBuf( area ) );
    
            for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
            {
              orgTUs[ j ]->copyComponentFrom( *saveCS.tus[ j ], area.compID );
            }
          }
        }
    
        pu.intraDir[1] = uiBestMode;
        cs.dist        = uiBestDist;
      }
    
      //----- restore context models -----
      m_CABACEstimator->getCtx() = ctxStart;
    }
    
    void IntraSearch::IPCMSearch(CodingStructure &cs, Partitioner& partitioner)
    {
      for (uint32_t ch = 0; ch < getNumberValidTBlocks( *cs.pcv ); ch++)
      {
        const ComponentID compID = ComponentID(ch);
    
        xEncPCM(cs, partitioner, compID);
      }
    
      cs.getPredBuf().fill(0);
      cs.getResiBuf().fill(0);
      cs.getOrgResiBuf().fill(0);
    
      cs.dist     = 0;
      cs.fracBits = 0;
      cs.cost     = 0;
    
      cs.setDecomp(cs.area);
      cs.picture->getRecoBuf(cs.area).copyFrom(cs.getRecoBuf());
    }
    
    void IntraSearch::xEncPCM(CodingStructure &cs, Partitioner& partitioner, const ComponentID &compID)
    {
      TransformUnit &tu = *cs.getTU( partitioner.chType );
    
      const int  channelBitDepth = cs.sps->getBitDepth(toChannelType(compID));
      const uint32_t uiPCMBitDepth = cs.sps->getPCMBitDepth(toChannelType(compID));
    
      const int pcmShiftRight = (channelBitDepth - int(uiPCMBitDepth));
    
      CompArea  area    = tu.blocks[compID];
      PelBuf    pcmBuf  = tu.getPcmbuf  (compID);
      PelBuf    recBuf  = cs.getRecoBuf ( area );
      CPelBuf   orgBuf  = cs.getOrgBuf  ( area );
    
      CHECK(pcmShiftRight < 0, "Negative shift");
    
      for (uint32_t uiY = 0; uiY < pcmBuf.height; uiY++)
      {
        for (uint32_t uiX = 0; uiX < pcmBuf.width; uiX++)
        {
          // Encode
          pcmBuf.at(uiX, uiY) = orgBuf.at(uiX, uiY) >> pcmShiftRight;
          // Reconstruction
          recBuf.at(uiX, uiY) = pcmBuf.at(uiX, uiY) << pcmShiftRight;
        }
      }
    }
    
    // -------------------------------------------------------------------------------------------------------------------
    // Intra search
    // -------------------------------------------------------------------------------------------------------------------
    
    void IntraSearch::xEncIntraHeader(CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma)
    {
      CodingUnit &cu = *cs.getCU( partitioner.chType );
    
      if (bLuma)
      {
        bool isFirst = partitioner.currArea().lumaPos() == cs.area.lumaPos();
    
        // CU header
        if( isFirst )
        {
    
    Xiaozhong Xu's avatar
    Xiaozhong Xu committed
    #if JVET_L0293_CPR
            && cu.Y().valid()
    #endif
    
          {
            if( cs.pps->getTransquantBypassEnabledFlag() )
            {
              m_CABACEstimator->cu_transquant_bypass_flag( cu );
            }
            m_CABACEstimator->cu_skip_flag( cu );
            m_CABACEstimator->pred_mode   ( cu );
          }
    
    #if JVET_L0283_MULTI_REF_LINE
          m_CABACEstimator->extend_ref_line(cu);
    #endif
    
          if( CU::isIntra(cu) && cu.partSize == SIZE_2Nx2N )
          {
            m_CABACEstimator->pcm_data( cu );
            if( cu.ipcm )
            {
              return;
            }
          }
        }
    
        PredictionUnit &pu = *cs.getPU(partitioner.currArea().lumaPos(), partitioner.chType);
    
        // luma prediction mode
        if (cu.partSize == SIZE_2Nx2N)
        {
          if (isFirst)
          {
    
    Xiaozhong Xu's avatar
    Xiaozhong Xu committed
    #if JVET_L0293_CPR
            if ( !cu.Y().valid())
              m_CABACEstimator->pred_mode( cu );
    #endif
    
            m_CABACEstimator->intra_luma_pred_mode( pu );
          }
        }
      }
    
      if (bChroma)
      {
        bool isFirst = partitioner.currArea().Cb().valid() && partitioner.currArea().chromaPos() == cs.area.chromaPos();
    
        PredictionUnit &pu = *cs.getPU( partitioner.currArea().chromaPos(), CHANNEL_TYPE_CHROMA );
    
        if( cu.partSize == SIZE_2Nx2N )
        {
          if( isFirst )
          {
            m_CABACEstimator->intra_chroma_pred_mode( pu );
          }
        }
      }
    }
    
    void IntraSearch::xEncSubdivCbfQT(CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma)
    {
      const UnitArea &currArea = partitioner.currArea();
      TransformUnit &currTU    = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType );
    
    #if HM_EMT_NSST_AS_IN_JEM
    
      CodingUnit &currCU       = *currTU.cu;
    #endif
      uint32_t currDepth           = partitioner.currTrDepth;
    
      const bool subdiv        = currTU.depth > currDepth;
    
      if( cs.pcv->noRQT )
      {
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          CHECK( !subdiv, "TU split implied" );
        }
        else
          CHECK( subdiv, "No TU subdivision is allowed with QTBT" );
      }
    
      if (bChroma)
      {
        const uint32_t numberValidComponents = getNumberValidComponents(currArea.chromaFormat);
    
        for (uint32_t ch = COMPONENT_Cb; ch < numberValidComponents; ch++)
        {
          const ComponentID compID = ComponentID(ch);
    
          if( currDepth == 0 || TU::getCbfAtDepth( currTU, compID, currDepth - 1 ) )
          {
            const bool prevCbf = ( compID == COMPONENT_Cr ? TU::getCbfAtDepth( currTU, COMPONENT_Cb, currDepth ) : false );
            m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, compID, currDepth ), currArea.blocks[compID], currDepth, prevCbf );
    
          }
        }
      }
    
      if (subdiv)
      {
    
    #if HM_EMT_NSST_AS_IN_JEM
    
        if( currDepth == 0 && bLuma ) m_CABACEstimator->emt_cu_flag( currCU );
    #endif
    
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
        }
        else
        THROW( "Cannot perform an implicit split!" );
    
        do
        {
          xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma );
        } while( partitioner.nextPart( cs ) );
    
        partitioner.exitCurrSplit();
      }
      else
      {
    
    #if HM_EMT_NSST_AS_IN_JEM
    
        if( currDepth == 0 && bLuma && TU::getCbfAtDepth( currTU, COMPONENT_Y, 0 ) ) m_CABACEstimator->emt_cu_flag( currCU );
    
    #endif
        //===== Cbfs =====
        if (bLuma)
        {
          m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, COMPONENT_Y, currDepth ), currTU.Y(), currTU.depth );
        }
      }
    }
    
    void IntraSearch::xEncCoeffQT(CodingStructure &cs, Partitioner &partitioner, const ComponentID &compID)
    {
      const UnitArea &currArea  = partitioner.currArea();
      TransformUnit &currTU     = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType );
      uint32_t      currDepth       = partitioner.currTrDepth;
      const bool subdiv         = currTU.depth > currDepth;
    
      if (subdiv)
      {
        if (partitioner.canSplit(TU_MAX_TR_SPLIT, cs))
        {
          partitioner.splitCurrArea(TU_MAX_TR_SPLIT, cs);
        }
        else
          THROW("Implicit TU split not available!");
    
        do
        {
          xEncCoeffQT( cs, partitioner, compID );
        } while( partitioner.nextPart( cs ) );
    
        partitioner.exitCurrSplit();
      }
      else
    
      if( currArea.blocks[compID].valid() )
      {
        if( TU::hasCrossCompPredInfo( currTU, compID ) )
        {
          m_CABACEstimator->cross_comp_pred( currTU, compID );
        }
        if( TU::getCbf( currTU, compID ) )
        {
          m_CABACEstimator->residual_coding( currTU, compID );
        }
      }
    }
    
    uint64_t IntraSearch::xGetIntraFracBitsQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma )
    {
      m_CABACEstimator->resetBits();
    
      xEncIntraHeader( cs, partitioner, bLuma, bChroma );
      xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma );
    
      if( bLuma )
      {
        xEncCoeffQT( cs, partitioner, COMPONENT_Y );
      }
      if( bChroma )
      {
        xEncCoeffQT( cs, partitioner, COMPONENT_Cb );
        xEncCoeffQT( cs, partitioner, COMPONENT_Cr );
      }
    
      uint64_t fracBits = m_CABACEstimator->getEstFracBits();
      return fracBits;
    }
    
    uint64_t IntraSearch::xGetIntraFracBitsQTChroma(TransformUnit& currTU, const ComponentID &compID)
    {
      m_CABACEstimator->resetBits();
    
      if( TU::hasCrossCompPredInfo( currTU, compID ) )
      {
        m_CABACEstimator->cross_comp_pred( currTU, compID );
      }
      if( TU::getCbf( currTU, compID ) )
      {
        m_CABACEstimator->residual_coding( currTU, compID );
      }
    
      uint64_t fracBits = m_CABACEstimator->getEstFracBits();
      return fracBits;
    }
    
    void IntraSearch::xIntraCodingTUBlock(TransformUnit &tu, const ComponentID &compID, const bool &checkCrossCPrediction, Distortion& ruiDist, const int &default0Save1Load2, uint32_t* numSig )
    {
      if (!tu.blocks[compID].valid())
      {
        return;
      }
    
      CodingStructure &cs                       = *tu.cs;
    
      const CompArea      &area                 = tu.blocks[compID];
      const SPS           &sps                  = *cs.sps;
      const PPS           &pps                  = *cs.pps;
    
      const ChannelType    chType               = toChannelType(compID);
      const int            bitDepth             = sps.getBitDepth(chType);
    
      PelBuf         piOrg                      = cs.getOrgBuf    (area);
      PelBuf         piPred                     = cs.getPredBuf   (area);
      PelBuf         piResi                     = cs.getResiBuf   (area);
      PelBuf         piOrgResi                  = cs.getOrgResiBuf(area);
      PelBuf         piReco                     = cs.getRecoBuf   (area);
    
      const PredictionUnit &pu                  = *cs.getPU(area.pos(), chType);
      const uint32_t           uiChFinalMode        = PU::getFinalIntraMode(pu, chType);
    
      const bool           bUseCrossCPrediction = pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && isChroma( compID ) && PU::isChromaIntraModeCrossCheckMode( pu ) && checkCrossCPrediction;
      const bool           ccUseRecoResi        = m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate();
    
    
    #if !JVET_L0059_MTS_SIMP
    
      const uint8_t          transformIndex       = tu.cu->emtFlag && compID == COMPONENT_Y ? tu.emtIdx : DCT2_EMT ;
    
    
      //===== init availability pattern =====
      PelBuf sharedPredTS( m_pSharedPredTransformSkip[compID], area );
      if( default0Save1Load2 != 2 )
      {
        const bool bUseFilteredPredictions = IntraPrediction::useFilteredIntraRefSamples( compID, pu, true, tu );
        initIntraPatternChType( *tu.cu, area, bUseFilteredPredictions );
    
        //===== get prediction signal =====
        if( compID != COMPONENT_Y && PU::isLMCMode( uiChFinalMode ) )
        {
          {
            xGetLumaRecPixels( pu, area );
          }
          predIntraChromaLM( compID, piPred, pu, area, uiChFinalMode );
        }
        else
        {
          predIntraAng( compID, piPred, pu, bUseFilteredPredictions );
        }
    
    
        // save prediction
        if( default0Save1Load2 == 1 )
        {
          sharedPredTS.copyFrom( piPred );
        }
      }
      else
      {
        // load prediction
        piPred.copyFrom( sharedPredTS );
      }
    
    
      DTRACE( g_trace_ctx, D_PRED, "@(%4d,%4d) [%2dx%2d] IMode=%d\n", tu.lx(), tu.ly(), tu.lwidth(), tu.lheight(), uiChFinalMode );
      //DTRACE_PEL_BUF( D_PRED, piPred, tu, tu.cu->predMode, COMPONENT_Y );
    
      //===== get residual signal =====
      piResi.copyFrom( piOrg  );
      piResi.subtract( piPred );
    
      if (pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && isLuma(compID))
      {
        piOrgResi.copyFrom (piResi);
      }
    
      if (bUseCrossCPrediction)
      {
        if (xCalcCrossComponentPredictionAlpha(tu, compID, ccUseRecoResi) == 0)
        {
          return;
        }
        CrossComponentPrediction::crossComponentPrediction(tu, compID, cs.getResiBuf(tu.Y()), piResi, piResi, false);
      }
    
      //===== transform and quantization =====
      //--- init rate estimation arrays for RDOQ ---
      //--- transform and quantization           ---
      TCoeff uiAbsSum = 0;
    
      const QpParam cQP(tu, compID);
    
    #if RDOQ_CHROMA_LAMBDA
      m_pcTrQuant->selectLambda(compID);
    #endif
    
    
      m_pcTrQuant->transformNxN(tu, compID, cQP, uiAbsSum, m_CABACEstimator->getCtx());
    
    
    #if !JVET_L0059_MTS_SIMP
    
      if( transformIndex != DCT2_EMT && ( !tu.transformSkip[COMPONENT_Y] ) ) //this can only be true if compID is luma
      {
        *numSig = 0;
        TCoeff* coeffBuffer = tu.getCoeffs(compID).buf;
        for( uint32_t uiX = 0; uiX < tu.Y().area(); uiX++ )
        {
          if( coeffBuffer[uiX] )
          {
            ( *numSig )++;
            if( *numSig > g_EmtSigNumThr )
            {
              break;
            }
          }
        }
        //if the number of significant coeffs is less than the threshold, then only the default transform (which has a 0 index, but it is the DST7) is allowed
        if( transformIndex != 0 && *numSig <= g_EmtSigNumThr && !tu.transformSkip[compID] )
        {
          return;
        }
      }
    
    
      DTRACE( g_trace_ctx, D_TU_ABS_SUM, "%d: comp=%d, abssum=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_TU_ABS_SUM ), compID, uiAbsSum );
    
    
      //--- inverse transform ---
      if (uiAbsSum > 0)
      {
        m_pcTrQuant->invTransformNxN(tu, compID, piResi, cQP);
      }
      else
      {
        piResi.fill(0);
      }
    
      //===== reconstruction =====
      if (bUseCrossCPrediction)
      {
        CrossComponentPrediction::crossComponentPrediction(tu, compID, cs.getResiBuf(tu.Y()), piResi, piResi, true);
      }
    
      piReco.reconstruct(piPred, piResi, cs.slice->clpRng( compID ));
    
      //===== update distortion =====
    #if WCG_EXT
      if( m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() )
      {
        const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
        ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE_WTD, &orgLuma );
      }
      else
    #endif
      {
        ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE );
      }
    }
    
    void IntraSearch::xRecurIntraCodingLumaQT( CodingStructure &cs, Partitioner &partitioner )
    {
      const UnitArea &currArea = partitioner.currArea();
      const CodingUnit &cu     = *cs.getCU(currArea.lumaPos(), partitioner.chType);
      uint32_t     currDepth       = partitioner.currTrDepth;
      const PPS &pps           = *cs.pps;
      const bool keepResi      = pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() || KEEP_PRED_AND_RESI_SIGNALS;
      bool bCheckFull          = true;
      bool bCheckSplit         = false;
      bCheckFull               = cs.pcv->noRQT && !partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
      bCheckSplit              = cs.pcv->noRQT &&  partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
    
      uint32_t    numSig           = 0;
    
      if( !cs.pcv->noRQT )
      {
      }
    
      bool    checkInitTrDepth = false, checkInitTrDepthTransformSkipWinner = false;
    
      double     dSingleCost                        = MAX_DOUBLE;
      Distortion uiSingleDistLuma                   = 0;
      uint64_t     singleFracBits                     = 0;
      bool       checkTransformSkip                 = pps.getUseTransformSkip();
      int        bestModeId[MAX_NUM_COMPONENT]      = {0, 0, 0};
      uint8_t      nNumTransformCands                 = cu.emtFlag ? 4 : 1; //4 is the number of transforms of emt
      bool       isAllIntra                         = m_pcEncCfg->getIntraPeriod() == 1;
    
      uint8_t numTransformIndexCands                  = nNumTransformCands;
    
      const TempCtx ctxStart  ( m_CtxCache, m_CABACEstimator->getCtx() );
      TempCtx       ctxBest   ( m_CtxCache );
    
      CodingStructure *csSplit = nullptr;
      CodingStructure *csFull  = nullptr;
    
      if( bCheckSplit )
      {
        csSplit = &cs;
      }
      else if( bCheckFull )
      {
        csFull = &cs;
      }
    
      if( bCheckFull )
      {
        csFull->cost = 0.0;
    
        TransformUnit &tu = csFull->addTU( CS::getArea( *csFull, currArea, partitioner.chType ), partitioner.chType );
        tu.depth = currDepth;
    
        checkTransformSkip &= TU::hasTransformSkipFlag( *tu.cs, tu.Y() );
        checkTransformSkip &= !cu.transQuantBypass;
        checkTransformSkip &= !cu.emtFlag;
    
        CHECK( !tu.Y().valid(), "Invalid TU" );
    
        //this prevents transformSkip from being checked because we already know it's not the best mode
        checkTransformSkip = ( checkInitTrDepth && !checkInitTrDepthTransformSkipWinner ) ? false : checkTransformSkip;
    
    
        CHECK( checkInitTrDepthTransformSkipWinner && !checkTransformSkip, "Transform Skip must be enabled if it was the winner in the previous call of xRecurIntraCodingLumaQT!" );
    
        CodingStructure &saveCS = *m_pSaveCS[0];
    
        TransformUnit *tmpTU = nullptr;
    
        Distortion singleDistTmpLuma = 0;
        uint64_t     singleTmpFracBits = 0;
        double     singleCostTmp     = 0;
        int        firstCheckId      = 0;
    
        //we add the EMT candidates to the loop. TransformSkip will still be the last one to be checked (when modeId == lastCheckId) as long as checkTransformSkip is true
        int        lastCheckId       = numTransformIndexCands - ( firstCheckId + 1 ) + ( int ) checkTransformSkip;
        bool isNotOnlyOneMode        = lastCheckId != firstCheckId && !checkInitTrDepthTransformSkipWinner;
    
        if( isNotOnlyOneMode )
        {
          saveCS.pcv     = cs.pcv;
          saveCS.picture = cs.picture;
          saveCS.area.repositionTo(cs.area);
          saveCS.clearTUs();
          tmpTU = &saveCS.addTU(currArea, partitioner.chType);
        }
    
        bool cbfBestMode = false;
    
    
        for( int modeId = firstCheckId; modeId <= lastCheckId; modeId++ )
        {
          if( checkInitTrDepthTransformSkipWinner )
          {
            //If this is a full RQT call and the winner of the first call (checkFirst=true) was transformSkip, then we skip the first iteration of the loop, since transform skip always comes at the end
            if( modeId == firstCheckId )
            {
              continue;
            }
          }
    
          uint8_t transformIndex = modeId;
    
    
          if( ( transformIndex < lastCheckId ) || ( ( transformIndex == lastCheckId ) && !checkTransformSkip ) ) //we avoid this if the mode is transformSkip
          {
            // Skip checking other transform candidates if zero CBF is encountered and it is the best transform so far
            if( m_pcEncCfg->getFastIntraEMT() && isAllIntra && transformIndex && !cbfBestMode )
            {
              continue;
            }
          }
    
          if ((modeId != firstCheckId) && isNotOnlyOneMode)
          {
            m_CABACEstimator->getCtx() = ctxStart;
          }
    
          int default0Save1Load2 = 0;
          singleDistTmpLuma = 0;
    
          if (modeId == firstCheckId && modeId != lastCheckId && !checkInitTrDepthTransformSkipWinner )
          {
            default0Save1Load2 = 1;
          }
          else if (modeId != firstCheckId)
          {
            default0Save1Load2 = 2;
          }
    
          if (cu.emtFlag)
          {
            tu.emtIdx = transformIndex;
          }
          if( !checkTransformSkip )
          {
            tu.transformSkip[COMPONENT_Y] = false;
          }
          else
          {
            tu.transformSkip[COMPONENT_Y] = modeId == lastCheckId;
          }
    
          xIntraCodingTUBlock( tu, COMPONENT_Y, false, singleDistTmpLuma, default0Save1Load2, &numSig );
    
          //----- determine rate and r-d cost -----
          //the condition (transformIndex != DCT2_EMT) seems to be irrelevant, since DCT2_EMT=7 and the highest value of transformIndex is 4
    
    #if JVET_L0059_MTS_SIMP
          if( ( modeId == lastCheckId && checkTransformSkip && !TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth ) ) )
    #else
    
    1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
          if( ( modeId == lastCheckId && checkTransformSkip && !TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth ) )
            || ( tu.emtIdx > 0 && ( checkTransformSkip ? transformIndex != lastCheckId : true ) && tu.emtIdx != DCT2_EMT && numSig <= g_EmtSigNumThr ) )
    #endif
          {
            //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
            singleCostTmp = MAX_DOUBLE;
          }
          else
          {
            singleTmpFracBits = xGetIntraFracBitsQT( *csFull, partitioner, true, false );
            singleCostTmp     = m_pcRdCost->calcRdCost( singleTmpFracBits, singleDistTmpLuma );
          }
    
          if (singleCostTmp < dSingleCost)
          {
            dSingleCost       = singleCostTmp;
            uiSingleDistLuma  = singleDistTmpLuma;
            singleFracBits    = singleTmpFracBits;
    
            bestModeId[COMPONENT_Y] = modeId;
            cbfBestMode       = TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth );
    
    
            if( bestModeId[COMPONENT_Y] != lastCheckId )
            {
    #if KEEP_PRED_AND_RESI_SIGNALS
              saveCS.getPredBuf( tu.Y() ).copyFrom( csFull->getPredBuf( tu.Y() ) );
    #endif
              saveCS.getRecoBuf( tu.Y() ).copyFrom( csFull->getRecoBuf( tu.Y() ) );
    
              if( keepResi )
              {
                saveCS.getResiBuf   ( tu.Y() ).copyFrom( csFull->getResiBuf   ( tu.Y() ) );
                saveCS.getOrgResiBuf( tu.Y() ).copyFrom( csFull->getOrgResiBuf( tu.Y() ) );
              }
    
              tmpTU->copyComponentFrom( tu, COMPONENT_Y );
    
              ctxBest = m_CABACEstimator->getCtx();
            }
          }
        }
    
        if( bestModeId[COMPONENT_Y] != lastCheckId )
        {
    #if KEEP_PRED_AND_RESI_SIGNALS
          csFull->getPredBuf( tu.Y() ).copyFrom( saveCS.getPredBuf( tu.Y() ) );
    #endif
          csFull->getRecoBuf( tu.Y() ).copyFrom( saveCS.getRecoBuf( tu.Y() ) );
    
          if( keepResi )
          {
            csFull->getResiBuf   ( tu.Y() ).copyFrom( saveCS.getResiBuf   ( tu.Y() ) );
            csFull->getOrgResiBuf( tu.Y() ).copyFrom( saveCS.getOrgResiBuf( tu.Y() ) );
          }
    
          tu.copyComponentFrom( *tmpTU, COMPONENT_Y );
    
          if( !bCheckSplit )
          {
            m_CABACEstimator->getCtx() = ctxBest;
          }
        }
        else if( bCheckSplit )
        {
          ctxBest = m_CABACEstimator->getCtx();
        }
    
        csFull->cost     += dSingleCost;
        csFull->dist     += uiSingleDistLuma;
        csFull->fracBits += singleFracBits;
      }
    
      if( bCheckSplit )
      {
        //----- store full entropy coding status, load original entropy coding status -----
        if( bCheckFull )
        {
          m_CABACEstimator->getCtx() = ctxStart;
        }
        //----- code splitted block -----
        csSplit->cost = 0;
    
        bool uiSplitCbfLuma  = false;
        bool splitIsSelected = true;
        if( cs.pcv->noRQT && partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
        }
    
        do
        {
          xRecurIntraCodingLumaQT( *csSplit, partitioner );
    
          csSplit->setDecomp( partitioner.currArea().Y() );
    
          uiSplitCbfLuma |= TU::getCbfAtDepth( *csSplit->getTU( partitioner.currArea().lumaPos(), partitioner.chType ), COMPONENT_Y, partitioner.currTrDepth );
    
    
    
        } while( partitioner.nextPart( *csSplit ) );
    
        partitioner.exitCurrSplit();
    
        if( splitIsSelected )
        {
          for( auto &ptu : csSplit->tus )
          {
            if( currArea.Y().contains( ptu->Y() ) )
            {
              TU::setCbfAtDepth( *ptu, COMPONENT_Y, currDepth, uiSplitCbfLuma ? 1 : 0 );
            }
          }
    
          //----- restore context states -----
          m_CABACEstimator->getCtx() = ctxStart;
    
          //----- determine rate and r-d cost -----
          csSplit->fracBits = xGetIntraFracBitsQT(*csSplit, partitioner, true, false);
    
          //--- update cost ---
          csSplit->cost     = m_pcRdCost->calcRdCost(csSplit->fracBits, csSplit->dist);
        }
      }
    
      if( csFull || csSplit )
      {
        {
          // otherwise this would've happened in useSubStructure
          cs.picture->getRecoBuf( currArea.Y() ).copyFrom( cs.getRecoBuf( currArea.Y() ) );
        }
    
        cs.cost = m_pcRdCost->calcRdCost( cs.fracBits, cs.dist );
      }
    }
    
    ChromaCbfs IntraSearch::xRecurIntraChromaCodingQT(CodingStructure &cs, Partitioner& partitioner)
    {
      UnitArea currArea                   = partitioner.currArea();
      const bool keepResi                 = cs.sps->getSpsNext().getUseLMChroma() || KEEP_PRED_AND_RESI_SIGNALS;
      if( !currArea.Cb().valid() ) return ChromaCbfs( false );
    
    
      TransformUnit &currTU               = *cs.getTU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
      const PredictionUnit &pu            = *cs.getPU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
      const TransformUnit &currTULuma     = CS::isDualITree( cs ) ? *cs.picture->cs->getTU( currArea.lumaPos(), CHANNEL_TYPE_LUMA ) : currTU;
    
      uint32_t     currDepth                  = partitioner.currTrDepth;
      const PPS &pps                      = *cs.pps;
      ChromaCbfs cbfs                     ( false );
    
      if (currDepth == currTU.depth)
      {
        if (!currArea.Cb().valid() || !currArea.Cr().valid())
        {
          return cbfs;
        }
    
        bool checkTransformSkip = pps.getUseTransformSkip();
        checkTransformSkip &= TU::hasTransformSkipFlag( *currTU.cs, partitioner.currArea().Cb() );
    
        if( m_pcEncCfg->getUseTransformSkipFast() )
        {
          checkTransformSkip &= TU::hasTransformSkipFlag( *currTU.cs, partitioner.currArea().Y() );
    
          if( checkTransformSkip && cs.pcv->noChroma2x2 )
          {
            int nbLumaSkip = currTULuma.transformSkip[0] ? 1 : 0;
    
            {
              // the chroma blocks are co-located with the last luma block, so backwards references are needed
              nbLumaSkip += cs.getTU( currTULuma.Y().topLeft().offset( -1,  0 ), partitioner.chType )->transformSkip[0] ? 1 : 0;
              nbLumaSkip += cs.getTU( currTULuma.Y().topLeft().offset( -1, -1 ), partitioner.chType )->transformSkip[0] ? 1 : 0;
              nbLumaSkip += cs.getTU( currTULuma.Y().topLeft().offset(  0, -1 ), partitioner.chType )->transformSkip[0] ? 1 : 0;
            }
    
            checkTransformSkip &= ( nbLumaSkip > 0 );
          }
        }
    
        CodingStructure &saveCS = *m_pSaveCS[1];
        saveCS.pcv      = cs.pcv;
        saveCS.picture  = cs.picture;
        saveCS.area.repositionTo( cs.area );
        saveCS.initStructData( -1, false, true );
    
        TransformUnit &tmpTU = saveCS.addTU(currArea, partitioner.chType);
    
    
        cs.setDecomp(currArea.Cb(), true); // set in advance (required for Cb2/Cr2 in 4:2:2 video)
    
        const unsigned      numTBlocks  = ::getNumberValidTBlocks( *cs.pcv );
    
        for( uint32_t c = COMPONENT_Cb; c < numTBlocks; c++)
        {
          const ComponentID compID  = ComponentID(c);
          const CompArea&   area    = currTU.blocks[compID];
    
          double     dSingleCost    = MAX_DOUBLE;
          int        bestModeId     = 0;
          Distortion singleDistC    = 0;
          Distortion singleDistCTmp = 0;
          double     singleCostTmp  = 0;
    
          const bool checkCrossComponentPrediction = PU::isChromaIntraModeCrossCheckMode( pu ) && pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf( currTU, COMPONENT_Y );
    
          const int  crossCPredictionModesToTest = checkCrossComponentPrediction ? 2 : 1;
          const int  transformSkipModesToTest    = checkTransformSkip ? 2 : 1;
          const int  totalModesToTest            = crossCPredictionModesToTest * transformSkipModesToTest;
          const bool isOneMode                   = (totalModesToTest == 1);
    
          int currModeId = 0;
          int default0Save1Load2 = 0;
    
          TempCtx ctxStart  ( m_CtxCache );
          TempCtx ctxBest   ( m_CtxCache );
    
          if (!isOneMode)
          {
            ctxStart = m_CABACEstimator->getCtx();
          }
    
          for (int transformSkipModeId = 0; transformSkipModeId < transformSkipModesToTest; transformSkipModeId++)
          {
            for (int crossCPredictionModeId = 0; crossCPredictionModeId < crossCPredictionModesToTest; crossCPredictionModeId++)
            {
              currTU.compAlpha    [compID] = 0;
              currTU.transformSkip[compID] = transformSkipModeId;
    
              currModeId++;
    
              const bool isFirstMode = (currModeId == 1);
              const bool isLastMode  = (currModeId == totalModesToTest); // currModeId is indexed from 1
    
              if (isOneMode)
              {
                default0Save1Load2 = 0;
              }
              else if (!isOneMode && (transformSkipModeId == 0) && (crossCPredictionModeId == 0))
              {
                default0Save1Load2 = 1; //save prediction on first mode
              }
              else
              {
                default0Save1Load2 = 2; //load it on subsequent modes
              }
    
              if (!isFirstMode) // if not first mode to be tested
              {
                m_CABACEstimator->getCtx() = ctxStart;
              }
    
              singleDistCTmp = 0;
    
              xIntraCodingTUBlock( currTU, compID, crossCPredictionModeId != 0, singleDistCTmp, default0Save1Load2 );
    
              if( ( ( crossCPredictionModeId == 1 ) && ( currTU.compAlpha[compID] == 0 ) ) || ( ( transformSkipModeId == 1 ) && !TU::getCbf( currTU, compID ) ) ) //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
              {
                singleCostTmp = MAX_DOUBLE;
              }
              else if( !isOneMode )
              {
                uint64_t fracBitsTmp = xGetIntraFracBitsQTChroma( currTU, compID );
                singleCostTmp = m_pcRdCost->calcRdCost( fracBitsTmp, singleDistCTmp );
              }
    
              if( singleCostTmp < dSingleCost )
              {
                dSingleCost = singleCostTmp;
                singleDistC = singleDistCTmp;
                bestModeId  = currModeId;
    
                if( !isLastMode )
                {
    #if KEEP_PRED_AND_RESI_SIGNALS
                  saveCS.getPredBuf   (area).copyFrom(cs.getPredBuf   (area));
                  saveCS.getOrgResiBuf(area).copyFrom(cs.getOrgResiBuf(area));
    #endif
                  if( keepResi )
                  {
                    saveCS.getResiBuf (area).copyFrom(cs.getResiBuf   (area));
                  }
                  saveCS.getRecoBuf   (area).copyFrom(cs.getRecoBuf   (area));
    
                  tmpTU.copyComponentFrom(currTU, compID);
    
                  ctxBest = m_CABACEstimator->getCtx();
                }
              }
            }
          }
    
          if (bestModeId < totalModesToTest)
          {
    #if KEEP_PRED_AND_RESI_SIGNALS
            cs.getPredBuf   (area).copyFrom(saveCS.getPredBuf   (area));
            cs.getOrgResiBuf(area).copyFrom(saveCS.getOrgResiBuf(area));
    #endif
            if( keepResi )
            {
              cs.getResiBuf (area).copyFrom(saveCS.getResiBuf   (area));
            }
            cs.getRecoBuf   (area).copyFrom(saveCS.getRecoBuf   (area));
    
            currTU.copyComponentFrom(tmpTU, compID);
    
            m_CABACEstimator->getCtx() = ctxBest;
          }
    
          cs.picture->getRecoBuf(area).copyFrom(cs.getRecoBuf(area));
    
          cbfs.cbf(compID) = TU::getCbf(currTU, compID);
    
          cs.dist += singleDistC;
        }
      }
      else
      {
        unsigned    numValidTBlocks   = ::getNumberValidTBlocks( *cs.pcv );
        ChromaCbfs  SplitCbfs         ( false );
    
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
        }
        else
          THROW( "Implicit TU split not available" );
    
        do
        {
          ChromaCbfs subCbfs = xRecurIntraChromaCodingQT( cs, partitioner );
    
          for( uint32_t ch = COMPONENT_Cb; ch < numValidTBlocks; ch++ )
          {
            const ComponentID compID = ComponentID( ch );
            SplitCbfs.cbf( compID ) |= subCbfs.cbf( compID );
          }
        } while( partitioner.nextPart( cs ) );
    
        partitioner.exitCurrSplit();
    
        {
    
          cbfs.Cb |= SplitCbfs.Cb;
          cbfs.Cr |= SplitCbfs.Cr;
    
          for( auto &ptu : cs.tus )
          {
            if( currArea.Cb().contains( ptu->Cb() ) || ( !ptu->Cb().valid() && currArea.Y().contains( ptu->Y() ) ) )
            {
              TU::setCbfAtDepth( *ptu, COMPONENT_Cb, currDepth, SplitCbfs.Cb );
              TU::setCbfAtDepth( *ptu, COMPONENT_Cr, currDepth, SplitCbfs.Cr );
            }
          }
        }
      }
    
      return cbfs;
    }
    
    uint64_t IntraSearch::xFracModeBitsIntra(PredictionUnit &pu, const uint32_t &uiMode, const ChannelType &chType)
    {
      uint32_t orgMode = uiMode;
    
    
    #if JVET_L0100_MULTI_HYPOTHESIS_INTRA
    
      if (!pu.mhIntraFlag)
    
      std::swap(orgMode, pu.intraDir[chType]);
    
      m_CABACEstimator->resetBits();
    
      if( isLuma( chType ) )
      {
    
    #if JVET_L0100_MULTI_HYPOTHESIS_INTRA
    
        if ( pu.mhIntraFlag )
    
          m_CABACEstimator->MHIntra_luma_pred_modes(*pu.cu);
        else
        {
    
    #if JVET_L0283_MULTI_REF_LINE
          m_CABACEstimator->extend_ref_line(pu);
    #endif
    
          m_CABACEstimator->intra_luma_pred_mode(pu);
        }
    #else
    
    #if JVET_L0283_MULTI_REF_LINE
        m_CABACEstimator->extend_ref_line(pu);
    #endif
    
        m_CABACEstimator->intra_luma_pred_mode( pu );