Newer
Older
for (int mode = isSecondColorSpace ? 0 : -2 * int(testBDPCM); mode < (int)uiRdModeList.size(); mode++)
{
// set CU/PU to luma prediction mode
ModeInfo uiOrgMode;
if (sps.getUseColorTrans() && !m_pcEncCfg->getRGBFormatFlag() && isSecondColorSpace && mode)
{
continue;
}
if (mode < 0 || (isSecondColorSpace && m_savedBDPCMModeFirstColorSpace[m_savedRdModeIdx][mode]))
cu.bdpcmMode = mode < 0 ? -mode : m_savedBDPCMModeFirstColorSpace[m_savedRdModeIdx][mode];
uiOrgMode = ModeInfo( false, false, 0, NOT_INTRA_SUBPARTITIONS, cu.bdpcmMode == 2 ? VER_IDX : HOR_IDX );
}
else
{
cu.bdpcmMode = 0;
uiOrgMode = uiRdModeList[mode];
}
if (!cu.bdpcmMode && uiRdModeList[mode].ispMod == INTRA_SUBPARTITIONS_RESERVED)
{
if (mode == numNonISPModes) // the list needs to be sorted only once
m_modeCtrl->setBestPredModeDCT2(uiBestPUMode.modeId);
if (!xSortISPCandList(bestCurrentCost, csBest->cost, uiBestPUMode))
{
break;
}
}
xGetNextISPMode(uiRdModeList[mode], (mode > 0 ? &uiRdModeList[mode - 1] : nullptr), Size(width, height));
if (uiRdModeList[mode].ispMod == INTRA_SUBPARTITIONS_RESERVED)
{
continue;
cu.lfnstIdx = m_curIspLfnstIdx;
uiOrgMode = uiRdModeList[mode];
}
cu.mipFlag = uiOrgMode.mipFlg;
pu.mipTransposedFlag = uiOrgMode.mipTrFlg;
cu.ispMode = uiOrgMode.ispMod;
pu.multiRefIdx = uiOrgMode.mRefId;
pu.intraDir[CHANNEL_TYPE_LUMA] = uiOrgMode.modeId;
CHECK(cu.mipFlag && pu.multiRefIdx, "Error: combination of MIP and MRL not supported");
CHECK(pu.multiRefIdx && (pu.intraDir[0] == PLANAR_IDX), "Error: combination of MRL and Planar mode not supported");
CHECK(cu.ispMode && cu.mipFlag, "Error: combination of ISP and MIP not supported");
CHECK(cu.ispMode && pu.multiRefIdx, "Error: combination of ISP and MRL not supported");
CHECK(cu.ispMode&& cu.colorTransform, "Error: combination of ISP and ACT not supported");
pu.intraDir[CHANNEL_TYPE_CHROMA] = cu.colorTransform ? DM_CHROMA_IDX : pu.intraDir[CHANNEL_TYPE_CHROMA];

Karsten Suehring
committed
// set context models
m_CABACEstimator->getCtx() = ctxStart;
// determine residual for partition
cs.initSubStructure( *csTemp, partitioner.chType, cs.area, true );
bool tmpValidReturn = false;
if( cu.ispMode )
{
if ( m_pcEncCfg->getUseFastISP() )
{
m_modeCtrl->setISPWasTested(true);
}
tmpValidReturn = xIntraCodingLumaISP(*csTemp, subTuPartitioner, bestCurrentCost);
if (csTemp->tus.size() == 0)
{
// no TUs were coded
csTemp->cost = MAX_DOUBLE;
continue;
}
// we save the data for future tests
m_ispTestedModes[m_curIspLfnstIdx].setModeResults((ISPType)cu.ispMode, (int)uiOrgMode.modeId, (int)csTemp->tus.size(), csTemp->cus[0]->firstTU->cbf[COMPONENT_Y] ? csTemp->cost : MAX_DOUBLE, csBest->cost);
csTemp->cost = !tmpValidReturn ? MAX_DOUBLE : csTemp->cost;
}
else
{
if (cu.colorTransform)
{
tmpValidReturn = xRecurIntraCodingACTQT(*csTemp, partitioner, mtsCheckRangeFlag, mtsFirstCheckId, mtsLastCheckId, moreProbMTSIdxFirst);
}
else
{
tmpValidReturn = xRecurIntraCodingLumaQT(
*csTemp, partitioner, uiBestPUMode.ispMod ? bestCurrentCost : MAX_DOUBLE, -1, TU_NO_ISP,
uiBestPUMode.ispMod, mtsCheckRangeFlag, mtsFirstCheckId, mtsLastCheckId, moreProbMTSIdxFirst);
}
if (!cu.ispMode && !cu.mtsFlag && !cu.lfnstIdx && !cu.bdpcmMode && !pu.multiRefIdx && !cu.mipFlag && testISP)
{
m_regIntraRDListWithCosts.push_back( ModeInfoWithCost( cu.mipFlag, pu.mipTransposedFlag, pu.multiRefIdx, cu.ispMode, uiOrgMode.modeId, csTemp->cost ) );
if( cu.ispMode && !csTemp->cus[0]->firstTU->cbf[COMPONENT_Y] )
{
csTemp->cost = MAX_DOUBLE;
tmpValidReturn = false;
validReturn |= tmpValidReturn;
if( sps.getUseLFNST() && mtsUsageFlag == 1 && !cu.ispMode && mode >= 0 )
{
m_modeCostStore[lfnstIdx][mode] = tmpValidReturn ? csTemp->cost : (MAX_DOUBLE / 2.0); //(MAX_DOUBLE / 2.0) ??
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraCost T [x=%d,y=%d,w=%d,h=%d] %f (%d,%d,%d,%d,%d,%d) \n", cu.blocks[0].x,
cu.blocks[0].y, (int) width, (int) height, csTemp->cost, uiOrgMode.modeId, uiOrgMode.ispMod,
pu.multiRefIdx, cu.mipFlag, cu.lfnstIdx, cu.mtsFlag);
if( tmpValidReturn )

Karsten Suehring
committed
{
if (isFirstColorSpace)
{
if (m_pcEncCfg->getRGBFormatFlag() || !cu.ispMode)
{
sortRdModeListFirstColorSpace(uiOrgMode, csTemp->cost, cu.bdpcmMode, m_savedRdModeFirstColorSpace[m_savedRdModeIdx], m_savedRdCostFirstColorSpace[m_savedRdModeIdx], m_savedBDPCMModeFirstColorSpace[m_savedRdModeIdx], m_numSavedRdModeFirstColorSpace[m_savedRdModeIdx]);
}
}
// check r-d cost
if( csTemp->cost < csBest->cost )
{
std::swap( csTemp, csBest );

Karsten Suehring
committed
uiBestPUMode = uiOrgMode;
bestBDPCMMode = cu.bdpcmMode;
if( sps.getUseLFNST() && mtsUsageFlag == 1 && !cu.ispMode )
{
m_bestModeCostStore[ lfnstIdx ] = csBest->cost; //cs.cost;
}
if( csBest->cost < bestCurrentCost )
{
bestCurrentCost = csBest->cost;
}
if ( cu.ispMode )
{
m_modeCtrl->setIspCost(csBest->cost);
bestLfnstIdx = cu.lfnstIdx;
}
else if ( testISP )
{
m_modeCtrl->setMtsFirstPassNoIspCost(csBest->cost);
}
}
if( !cu.ispMode && !cu.bdpcmMode && csBest->cost < bestCostNonBDPCM )
bestCostNonBDPCM = csBest->cost;

Karsten Suehring
committed
csTemp->releaseIntermediateData();
if( m_pcEncCfg->getFastLocalDualTreeMode() )
if( cu.isConsIntra() && !cu.slice->isIntra() && csBest->cost != MAX_DOUBLE && costInterCU != COST_UNKNOWN && mode >= 0 )
if( m_pcEncCfg->getFastLocalDualTreeMode() == 2 )
//Note: only try one intra mode, which is especially useful to reduce EncT for LDB case (around 4%)
else
{
if( csBest->cost > costInterCU * 1.5 )
{
break;
}
}
if (sps.getUseColorTrans() && !CS::isDualITree(cs))
{
if ((m_pcEncCfg->getRGBFormatFlag() && !cu.colorTransform) && csBest->cost != MAX_DOUBLE && bestCS->cost != MAX_DOUBLE && mode >= 0)
{
if (csBest->cost > bestCS->cost)
{
break;
}
}
}

Karsten Suehring
committed
} // Mode loop
cu.ispMode = uiBestPUMode.ispMod;

Karsten Suehring
committed
if( validReturn )
{
if (cu.colorTransform)
{
cs.useSubStructure(*csBest, partitioner.chType, pu, true, true, KEEP_PRED_AND_RESI_SIGNALS, KEEP_PRED_AND_RESI_SIGNALS, true);

Karsten Suehring
committed
cs.useSubStructure(*csBest, partitioner.chType, pu.singleChan(CHANNEL_TYPE_LUMA), true, true, KEEP_PRED_AND_RESI_SIGNALS,
KEEP_PRED_AND_RESI_SIGNALS, true);

Karsten Suehring
committed
csBest->releaseIntermediateData();
if( validReturn )
{
//=== update PU data ====
cu.mipFlag = uiBestPUMode.mipFlg;
pu.mipTransposedFlag = uiBestPUMode.mipTrFlg;
pu.multiRefIdx = uiBestPUMode.mRefId;
pu.intraDir[ CHANNEL_TYPE_LUMA ] = uiBestPUMode.modeId;
cu.bdpcmMode = bestBDPCMMode;
if (cu.colorTransform)
{
CHECK(pu.intraDir[CHANNEL_TYPE_CHROMA] != DM_CHROMA_IDX, "chroma should use DM mode for adaptive color transform");
}

Karsten Suehring
committed
}
//===== reset context models =====
m_CABACEstimator->getCtx() = ctxStart;
return validReturn;

Karsten Suehring
committed
}
void IntraSearch::estIntraPredChromaQT( CodingUnit &cu, Partitioner &partitioner, const double maxCostAllowed )

Karsten Suehring
committed
{
const ChromaFormat format = cu.chromaFormat;
const uint32_t numberValidComponents = getNumberValidComponents(format);
CodingStructure &cs = *cu.cs;
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
cs.setDecomp( cs.area.Cb(), false );
double bestCostSoFar = maxCostAllowed;
bool lumaUsesISP = !cu.isSepTree() && cu.ispMode;
PartSplit ispType = lumaUsesISP ? CU::getISPType( cu, COMPONENT_Y ) : TU_NO_ISP;
CHECK( cu.ispMode && bestCostSoFar < 0, "bestCostSoFar must be positive!" );

Karsten Suehring
committed
auto &pu = *cu.firstPU;
{
uint32_t uiBestMode = 0;
Distortion uiBestDist = 0;
double dBestCost = MAX_DOUBLE;

Karsten Suehring
committed
//----- init mode list ----
{
int32_t uiMinMode = 0;
int32_t uiMaxMode = NUM_CHROMA_MODE;

Karsten Suehring
committed
//----- check chroma modes -----
uint32_t chromaCandModes[ NUM_CHROMA_MODE ];
PU::getIntraChromaCandModes( pu, chromaCandModes );
// create a temporary CS
CodingStructure &saveCS = *m_pSaveCS[0];
saveCS.pcv = cs.pcv;
saveCS.picture = cs.picture;
saveCS.area.repositionTo( cs.area );
saveCS.clearTUs();
if( !cu.isSepTree() && cu.ispMode )
{
saveCS.clearCUs();
saveCS.clearPUs();
}

Karsten Suehring
committed
{
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
do
{
cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType ).depth = partitioner.currTrDepth;
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType );
}
std::vector<TransformUnit*> orgTUs;
if( lumaUsesISP )
{
CodingUnit& auxCU = saveCS.addCU( cu, partitioner.chType );
auxCU.ispMode = cu.ispMode;
saveCS.sps = cu.cs->sps;
saveCS.addPU( *cu.firstPU, partitioner.chType );
}

Karsten Suehring
committed
// create a store for the TUs
for( const auto &ptu : cs.tus )
{
// for split TUs in HEVC, add the TUs without Chroma parts for correct setting of Cbfs
if( lumaUsesISP || pu.contains( *ptu, CHANNEL_TYPE_CHROMA ) )

Karsten Suehring
committed
{
saveCS.addTU( *ptu, partitioner.chType );
orgTUs.push_back( ptu );
}
}
if( lumaUsesISP )
{
saveCS.clearCUs();
}
// SATD pre-selecting.
int satdModeList[NUM_CHROMA_MODE];
int64_t satdSortedCost[NUM_CHROMA_MODE];
for (int i = 0; i < NUM_CHROMA_MODE; i++)
{
satdSortedCost[i] = 0; // for the mode not pre-select by SATD, do RDO by default, so set the initial value 0.
satdModeList[i] = 0;
}
bool modeIsEnable[NUM_INTRA_MODE + 1]; // use intra mode idx to check whether enable
for (int i = 0; i < NUM_INTRA_MODE + 1; i++)
{
modeIsEnable[i] = 1;
}
DistParam distParamSad;
DistParam distParamSatd;
pu.intraDir[1] = MDLM_L_IDX; // temporary assigned, just to indicate this is a MDLM mode. for luma down-sampling operation.
initIntraPatternChType(cu, pu.Cb());
initIntraPatternChType(cu, pu.Cr());
xGetLumaRecPixels(pu, pu.Cb());
for (int idx = uiMinMode; idx <= uiMaxMode - 1; idx++)
{
int mode = chromaCandModes[idx];
satdModeList[idx] = mode;
if (PU::isLMCMode(mode) && !PU::isLMCModeEnabled(pu, mode))
{
continue;
}
if ((mode == LM_CHROMA_IDX) || (mode == PLANAR_IDX) || (mode == DM_CHROMA_IDX)) // only pre-check regular modes and MDLM modes, not including DM ,Planar, and LM
{
continue;
}
pu.intraDir[1] = mode; // temporary assigned, for SATD checking.
int64_t sad = 0;
int64_t sadCb = 0;
int64_t satdCb = 0;
int64_t sadCr = 0;
int64_t satdCr = 0;
CodingStructure& cs = *(pu.cs);
CompArea areaCb = pu.Cb();
PelBuf orgCb = cs.getOrgBuf(areaCb);
PelBuf predCb = cs.getPredBuf(areaCb);
m_pcRdCost->setDistParam(distParamSad, orgCb, predCb, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cb, false);
m_pcRdCost->setDistParam(distParamSatd, orgCb, predCb, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cb, true);
distParamSad.applyWeight = false;
distParamSatd.applyWeight = false;
if (PU::isLMCMode(mode))
{
predIntraChromaLM(COMPONENT_Cb, predCb, pu, areaCb, mode);
}
else
{
Alexey Filippov
committed
initPredIntraParams(pu, pu.Cb(), *pu.cs->sps);
predIntraAng(COMPONENT_Cb, predCb, pu);
sadCb = distParamSad.distFunc(distParamSad) * 2;
satdCb = distParamSatd.distFunc(distParamSatd);
sad += std::min(sadCb, satdCb);
CompArea areaCr = pu.Cr();
PelBuf orgCr = cs.getOrgBuf(areaCr);
PelBuf predCr = cs.getPredBuf(areaCr);
m_pcRdCost->setDistParam(distParamSad, orgCr, predCr, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cr, false);
m_pcRdCost->setDistParam(distParamSatd, orgCr, predCr, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cr, true);
distParamSad.applyWeight = false;
distParamSatd.applyWeight = false;
if (PU::isLMCMode(mode))
{
predIntraChromaLM(COMPONENT_Cr, predCr, pu, areaCr, mode);
}
else
{
Alexey Filippov
committed
initPredIntraParams(pu, pu.Cr(), *pu.cs->sps);
predIntraAng(COMPONENT_Cr, predCr, pu);
sadCr = distParamSad.distFunc(distParamSad) * 2;
satdCr = distParamSatd.distFunc(distParamSatd);
sad += std::min(sadCr, satdCr);
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
satdSortedCost[idx] = sad;
}
// sort the mode based on the cost from small to large.
int tempIdx = 0;
int64_t tempCost = 0;
for (int i = uiMinMode; i <= uiMaxMode - 1; i++)
{
for (int j = i + 1; j <= uiMaxMode - 1; j++)
{
if (satdSortedCost[j] < satdSortedCost[i])
{
tempIdx = satdModeList[i];
satdModeList[i] = satdModeList[j];
satdModeList[j] = tempIdx;
tempCost = satdSortedCost[i];
satdSortedCost[i] = satdSortedCost[j];
satdSortedCost[j] = tempCost;
}
}
}
int reducedModeNumber = 2; // reduce the number of chroma modes
for (int i = 0; i < reducedModeNumber; i++)
{
modeIsEnable[satdModeList[uiMaxMode - 1 - i]] = 0; // disable the last reducedModeNumber modes
}

Karsten Suehring
committed
// save the dist
Distortion baseDist = cs.dist;
bool testBDPCM = true;
testBDPCM = testBDPCM && CU::bdpcmAllowed(cu, COMPONENT_Cb) && cu.ispMode == 0 && cu.mtsFlag == 0 && cu.lfnstIdx == 0;
for (int32_t uiMode = uiMinMode - (2 * int(testBDPCM)); uiMode < uiMaxMode; uiMode++)

Karsten Suehring
committed
{
if (uiMode < 0)
{
cu.bdpcmModeChroma = -uiMode;
chromaIntraMode = cu.bdpcmModeChroma == 2 ? chromaCandModes[1] : chromaCandModes[2];
chromaIntraMode = chromaCandModes[uiMode];

Karsten Suehring
committed
cu.bdpcmModeChroma = 0;
if( PU::isLMCMode( chromaIntraMode ) && ! PU::isLMCModeEnabled( pu, chromaIntraMode ) )
{
continue;
}
if (!modeIsEnable[chromaIntraMode] && PU::isLMCModeEnabled(pu, chromaIntraMode)) // when CCLM is disable, then MDLM is disable. not use satd checking
{
continue;
}

Karsten Suehring
committed
cs.setDecomp( pu.Cb(), false );
cs.dist = baseDist;
//----- restore context models -----
m_CABACEstimator->getCtx() = ctxStart;
//----- chroma coding -----
pu.intraDir[1] = chromaIntraMode;
xRecurIntraChromaCodingQT( cs, partitioner, bestCostSoFar, ispType );
if( lumaUsesISP && cs.dist == MAX_UINT )
{
continue;
}

Karsten Suehring
committed
if (cs.sps->getTransformSkipEnabledFlag())

Karsten Suehring
committed
{
m_CABACEstimator->getCtx() = ctxStart;
}
uint64_t fracBits = xGetIntraFracBitsQT( cs, partitioner, false, true, -1, ispType );

Karsten Suehring
committed
Distortion uiDist = cs.dist;
double dCost = m_pcRdCost->calcRdCost( fracBits, uiDist - baseDist );
//----- compare -----
if( dCost < dBestCost )
{
if( lumaUsesISP && dCost < bestCostSoFar )
{
bestCostSoFar = dCost;
}

Karsten Suehring
committed
for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
{
const CompArea &area = pu.blocks[i];
saveCS.getRecoBuf ( area ).copyFrom( cs.getRecoBuf ( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
saveCS.getPredBuf ( area ).copyFrom( cs.getPredBuf ( area ) );
saveCS.getResiBuf ( area ).copyFrom( cs.getResiBuf ( area ) );
#endif
saveCS.getPredBuf ( area ).copyFrom( cs.getPredBuf (area ) );
cs.picture->getPredBuf( area ).copyFrom( cs.getPredBuf (area ) );

Karsten Suehring
committed
cs.picture->getRecoBuf( area ).copyFrom( cs.getRecoBuf( area ) );
for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
{
saveCS.tus[j]->copyComponentFrom( *orgTUs[j], area.compID );
}
}
dBestCost = dCost;
uiBestDist = uiDist;
uiBestMode = chromaIntraMode;
bestBDPCMMode = cu.bdpcmModeChroma;

Karsten Suehring
committed
}
}
for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
{
const CompArea &area = pu.blocks[i];
cs.getRecoBuf ( area ).copyFrom( saveCS.getRecoBuf( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
cs.getPredBuf ( area ).copyFrom( saveCS.getPredBuf( area ) );
cs.getResiBuf ( area ).copyFrom( saveCS.getResiBuf( area ) );
#endif
cs.getPredBuf ( area ).copyFrom( saveCS.getPredBuf( area ) );
cs.picture->getPredBuf( area ).copyFrom( cs.getPredBuf ( area ) );

Karsten Suehring
committed
cs.picture->getRecoBuf( area ).copyFrom( cs. getRecoBuf( area ) );
for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
{
orgTUs[ j ]->copyComponentFrom( *saveCS.tus[ j ], area.compID );
}
}
}
pu.intraDir[1] = uiBestMode;
cs.dist = uiBestDist;
cu.bdpcmModeChroma = bestBDPCMMode;

Karsten Suehring
committed
}
//----- restore context models -----
m_CABACEstimator->getCtx() = ctxStart;
if( lumaUsesISP && bestCostSoFar >= maxCostAllowed )
{
cu.ispMode = 0;
}

Karsten Suehring
committed
}
void IntraSearch::saveCuAreaCostInSCIPU( Area area, double cost )
{
if( m_numCuInSCIPU < NUM_INTER_CU_INFO_SAVE )
{
m_cuAreaInSCIPU[m_numCuInSCIPU] = area;
m_cuCostInSCIPU[m_numCuInSCIPU] = cost;
m_numCuInSCIPU++;
}
}
void IntraSearch::initCuAreaCostInSCIPU()
{
for( int i = 0; i < NUM_INTER_CU_INFO_SAVE; i++ )
{
m_cuAreaInSCIPU[i] = Area();
m_cuCostInSCIPU[i] = 0;
}
m_numCuInSCIPU = 0;
}
void IntraSearch::PLTSearch(CodingStructure &cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
Yung-Hsuan Chao (Jessie)
committed
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
cs.getPredBuf().copyFrom(cs.getOrgBuf());
cs.getPredBuf().Y().rspSignal(m_pcReshape->getFwdLUT());
}
if( cu.isLocalSepTree() )
cs.prevPLT.curPLTSize[compBegin] = cs.prevPLT.curPLTSize[COMPONENT_Y];
cu.lastPLTSize[compBegin] = cs.prevPLT.curPLTSize[compBegin];
//derive palette
derivePLTLossy(cs, partitioner, compBegin, numComp);
reorderPLT(cs, partitioner, compBegin, numComp);
Yin Zhao
committed
bool idxExist[MAXPLTSIZE + 1] = { false };
preCalcPLTIndexRD(cs, partitioner, compBegin, numComp); // Pre-calculate distortions for each pixel
double rdCost = MAX_DOUBLE;
deriveIndexMap(cs, partitioner, compBegin, numComp, PLT_SCAN_HORTRAV, rdCost, idxExist); // Optimize palette index map (horizontal scan)
if ((cu.curPLTSize[compBegin] + cu.useEscape[compBegin]) > 1)
{
deriveIndexMap(cs, partitioner, compBegin, numComp, PLT_SCAN_VERTRAV, rdCost, idxExist); // Optimize palette index map (vertical scan)
}
// Remove unused palette entries
uint8_t newPLTSize = 0;
int idxMapping[MAXPLTSIZE + 1];
memset(idxMapping, -1, sizeof(int) * (MAXPLTSIZE + 1));
for (int i = 0; i < cu.curPLTSize[compBegin]; i++)
{
if (idxExist[i])
{
idxMapping[i] = newPLTSize;
newPLTSize++;
}
idxMapping[cu.curPLTSize[compBegin]] = cu.useEscape[compBegin]? newPLTSize: -1;
if (newPLTSize != cu.curPLTSize[compBegin]) // there exist unused palette entries
{ // update palette table and reuseflag
Pel curPLTtmp[MAX_NUM_COMPONENT][MAXPLTSIZE];
int reuseFlagIdx = 0, curPLTtmpIdx = 0, reuseEntrySize = 0;
memset(cu.reuseflag[compBegin], false, sizeof(bool) * MAXPLTPREDSIZE);
int compBeginTmp = compBegin;
int numCompTmp = numComp;
memset(cu.reuseflag[COMPONENT_Y], false, sizeof(bool) * MAXPLTPREDSIZE);
compBeginTmp = COMPONENT_Y;
numCompTmp = (cu.chromaFormat != CHROMA_400) ? 3 : 1;
}
for (int curIdx = 0; curIdx < cu.curPLTSize[compBegin]; curIdx++)
{
if (idxExist[curIdx])
{
for (int comp = compBeginTmp; comp < (compBeginTmp + numCompTmp); comp++)
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
curPLTtmp[comp][curPLTtmpIdx] = cu.curPLT[comp][curIdx];
// Update reuse flags
if (curIdx < cu.reusePLTSize[compBegin])
{
bool match = false;
for (; reuseFlagIdx < cs.prevPLT.curPLTSize[compBegin]; reuseFlagIdx++)
{
bool matchTmp = true;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
matchTmp = matchTmp && (curPLTtmp[comp][curPLTtmpIdx] == cs.prevPLT.curPLT[comp][reuseFlagIdx]);
}
if (matchTmp)
{
match = true;
break;
}
}
if (match)
{
cu.reuseflag[compBegin][reuseFlagIdx] = true;
if( cu.isLocalSepTree() )
cu.reuseflag[COMPONENT_Y][reuseFlagIdx] = true;
reuseEntrySize++;
}
}
curPLTtmpIdx++;
}
}
cu.reusePLTSize[compBegin] = reuseEntrySize;
// update palette table
cu.curPLTSize[compBegin] = newPLTSize;
if( cu.isLocalSepTree() )
cu.curPLTSize[COMPONENT_Y] = newPLTSize;
for (int comp = compBeginTmp; comp < (compBeginTmp + numCompTmp); comp++)
memcpy( cu.curPLT[comp], curPLTtmp[comp], sizeof(Pel)*cu.curPLTSize[compBegin]);
}
int indexMaxSize = cu.useEscape[compBegin] ? (cu.curPLTSize[compBegin] + 1) : cu.curPLTSize[compBegin];
if (indexMaxSize <= 1)
{
cu.useRotation[compBegin] = false;
}
//reconstruct pixel
PelBuf curPLTIdx = tu.getcurPLTIdx(compBegin);
for (uint32_t y = 0; y < height; y++)
for (uint32_t x = 0; x < width; x++)
curPLTIdx.at(x, y) = idxMapping[curPLTIdx.at(x, y)];
if (curPLTIdx.at(x, y) == cu.curPLTSize[compBegin])
calcPixelPred(cs, partitioner, y, x, compBegin, numComp);
}
else
{
for (uint32_t compID = compBegin; compID < (compBegin + numComp); compID++)
{
CompArea area = cu.blocks[compID];
PelBuf recBuf = cs.getRecoBuf(area);
uint32_t scaleX = getComponentScaleX((ComponentID)COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY((ComponentID)COMPONENT_Cb, cs.sps->getChromaFormatIdc());
if (compBegin != COMPONENT_Y || compID == COMPONENT_Y)
{
recBuf.at(x, y) = cu.curPLT[compID][curPLTIdx.at(x, y)];
else if (compBegin == COMPONENT_Y && compID != COMPONENT_Y && y % (1 << scaleY) == 0 && x % (1 << scaleX) == 0)
recBuf.at(x >> scaleX, y >> scaleY) = cu.curPLT[compID][curPLTIdx.at(x, y)];
}
}
}
}
}
cs.getPredBuf().fill(0);
cs.getResiBuf().fill(0);
cs.getOrgResiBuf().fill(0);
cs.fracBits = MAX_UINT;
cs.cost = MAX_DOUBLE;
Distortion distortion = 0;
for (uint32_t comp = compBegin; comp < (compBegin + numComp); comp++)
{
const ComponentID compID = ComponentID(comp);
CPelBuf reco = cs.getRecoBuf(compID);
CPelBuf org = cs.getOrgBuf(compID);
Yung-Hsuan Chao (Jessie)
committed
#if WCG_EXT
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (
m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag())))
{
const CPelBuf orgLuma = cs.getOrgBuf(cs.area.blocks[COMPONENT_Y]);
if (compID == COMPONENT_Y && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
const CompArea &areaY = cu.Y();
CompArea tmpArea1(COMPONENT_Y, areaY.chromaFormat, Position(0, 0), areaY.size());
PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.copyFrom(reco);
tmpRecLuma.rspSignal(m_pcReshape->getInvLUT());
distortion += m_pcRdCost->getDistPart(org, tmpRecLuma, cs.sps->getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
else
{
distortion += m_pcRdCost->getDistPart(org, reco, cs.sps->getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
}
else
Yung-Hsuan Chao (Jessie)
committed
#endif
distortion += m_pcRdCost->getDistPart(org, reco, cs.sps->getBitDepth(toChannelType(compID)), compID, DF_SSE);
}
Yung-Hsuan Chao (Jessie)
committed
cs.dist += distortion;
const CompArea &area = cu.blocks[compBegin];
cs.setDecomp(area);
cs.picture->getRecoBuf(area).copyFrom(cs.getRecoBuf(area));
Yung-Hsuan Chao (Jessie)
committed
}
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
void IntraSearch::calcPixelPredRD(CodingStructure& cs, Partitioner& partitioner, Pel* orgBuf, Pel* paPixelValue, Pel* paRecoValue, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
int qp[3];
int qpRem[3];
int qpPer[3];
int quantiserScale[3];
int quantiserRightShift[3];
int rightShiftOffset[3];
int invquantiserRightShift[3];
int add[3];
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
QpParam cQP(tu, ComponentID(ch));
qp[ch] = cQP.Qp(true);
qpRem[ch] = qp[ch] % 6;
qpPer[ch] = qp[ch] / 6;
quantiserScale[ch] = g_quantScales[0][qpRem[ch]];
quantiserRightShift[ch] = QUANT_SHIFT + qpPer[ch];
rightShiftOffset[ch] = 1 << (quantiserRightShift[ch] - 1);
invquantiserRightShift[ch] = IQUANT_SHIFT;
add[ch] = 1 << (invquantiserRightShift[ch] - 1);
}
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
const int channelBitDepth = cu.cs->sps->getBitDepth(toChannelType((ComponentID)ch));
paPixelValue[ch] = Pel(std::max<int>(0, ((orgBuf[ch] * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(paPixelValue[ch] < (1 << (channelBitDepth + 1)));
paRecoValue[ch] = (((paPixelValue[ch] * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
paRecoValue[ch] = Pel(ClipBD<int>(paRecoValue[ch], channelBitDepth));//to be checked
}
}
void IntraSearch::preCalcPLTIndexRD(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
int rasPos;
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
rasPos = y * width + x;;
// chroma discard
bool discardChroma = (compBegin == COMPONENT_Y) && (y&scaleY || x&scaleX);
Pel curPel[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
uint32_t pX1 = (comp > 0 && compBegin == COMPONENT_Y) ? (x >> scaleX) : x;
uint32_t pY1 = (comp > 0 && compBegin == COMPONENT_Y) ? (y >> scaleY) : y;
curPel[comp] = orgBuf[comp].at(pX1, pY1);
}
uint8_t pltIdx = 0;
double minError = MAX_DOUBLE;
uint8_t bestIdx = 0;
for (uint8_t z = 0; z < cu.curPLTSize[compBegin]; z++)
{
m_indexError[z][rasPos] = minError;
}
while (pltIdx < cu.curPLTSize[compBegin])
{
uint64_t sqrtError = 0;
if (lossless)
{
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
sqrtError += int64_t(abs(curPel[comp] - cu.curPLT[comp][pltIdx]));
}
if (sqrtError == 0)
{
m_indexError[pltIdx][rasPos] = (double) sqrtError;
minError = (double) sqrtError;
bestIdx = pltIdx;
break;
}
}
else
{
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
int64_t tmpErr = int64_t(curPel[comp] - cu.curPLT[comp][pltIdx]);
if (isChroma((ComponentID)comp))
{
sqrtError += uint64_t(tmpErr*tmpErr*ENC_CHROMA_WEIGHTING);
}
else
{
sqrtError += tmpErr*tmpErr;
}
}
m_indexError[pltIdx][rasPos] = (double)sqrtError;
if (sqrtError < minError)
{
minError = (double)sqrtError;
bestIdx = pltIdx;
}
pltIdx++;
}
Pel paPixelValue[3], paRecoValue[3];
if (!lossless)
{
calcPixelPredRD(cs, partitioner, curPel, paPixelValue, paRecoValue, compBegin, numComp);
uint64_t error = 0, rate = 0;
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
if (lossless)
{
rate += m_escapeNumBins[curPel[comp]];
}
else
{
int64_t tmpErr = int64_t(curPel[comp] - paRecoValue[comp]);
if (isChroma((ComponentID)comp))
{
error += uint64_t(tmpErr*tmpErr*ENC_CHROMA_WEIGHTING);
}
else
{
error += tmpErr*tmpErr;
}
rate += m_escapeNumBins[paPixelValue[comp]]; // encode quantized escape color
}
double rdCost = (double)error + m_pcRdCost->getLambda()*(double)rate;
m_indexError[cu.curPLTSize[compBegin]][rasPos] = rdCost;
if (rdCost < minError)
{
minError = rdCost;
bestIdx = (uint8_t)cu.curPLTSize[compBegin];
}
m_minErrorIndexMap[rasPos] = bestIdx; // save the optimal index of the current pixel
}
}
}
void IntraSearch::deriveIndexMap(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp, PLTScanMode pltScanMode, double& dMinCost, bool* idxExist)
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
int total = height*width;
Pel *runIndex = tu.getPLTIndex(compBegin);
bool *runType = tu.getRunTypes(compBegin);
m_scanOrder = g_scanOrder[SCAN_UNGROUPED][pltScanMode ? SCAN_TRAV_VER : SCAN_TRAV_HOR][gp_sizeIdxInfo->idxFrom(width)][gp_sizeIdxInfo->idxFrom(height)];
// Trellis initialization
for (int i = 0; i < 2; i++)
{
memset(m_prevRunTypeRDOQ[i], 0, sizeof(Pel)*NUM_TRELLIS_STATE);
memset(m_prevRunPosRDOQ[i], 0, sizeof(int)*NUM_TRELLIS_STATE);
memset(m_stateCostRDOQ[i], 0, sizeof (double)*NUM_TRELLIS_STATE);
}
for (int state = 0; state < NUM_TRELLIS_STATE; state++)
{
m_statePtRDOQ[state][0] = 0;
}
// Context modeling
const FracBitsAccess& fracBits = m_CABACEstimator->getCtx().getFracBitsAcess();
BinFracBits fracBitsPltCopyFlagIndex[RUN_IDX_THRE + 1];
for (int dist = 0; dist <= RUN_IDX_THRE; dist++)
{
const unsigned ctxId = DeriveCtx::CtxPltCopyFlag(PLT_RUN_INDEX, dist);
fracBitsPltCopyFlagIndex[dist] = fracBits.getFracBitsArray(Ctx::IdxRunModel( ctxId ) );
}
BinFracBits fracBitsPltCopyFlagAbove[RUN_IDX_THRE + 1];
for (int dist = 0; dist <= RUN_IDX_THRE; dist++)
{
const unsigned ctxId = DeriveCtx::CtxPltCopyFlag(PLT_RUN_COPY, dist);
fracBitsPltCopyFlagAbove[dist] = fracBits.getFracBitsArray(Ctx::CopyRunModel( ctxId ) );
}
const BinFracBits fracBitsPltRunType = fracBits.getFracBitsArray( Ctx::RunTypeFlag() );
// Trellis RDO per CG
bool contTrellisRD = true;
for (int subSetId = 0; ( subSetId <= (total - 1) >> LOG2_PALETTE_CG_SIZE ) && contTrellisRD; subSetId++)
{
int minSubPos = subSetId << LOG2_PALETTE_CG_SIZE;
int maxSubPos = minSubPos + (1 << LOG2_PALETTE_CG_SIZE);
maxSubPos = (maxSubPos > total) ? total : maxSubPos; // if last position is out of the current CU size
contTrellisRD = deriveSubblockIndexMap(cs, partitioner, compBegin, pltScanMode, minSubPos, maxSubPos, fracBitsPltRunType, fracBitsPltCopyFlagIndex, fracBitsPltCopyFlagAbove, dMinCost, (bool)pltScanMode);
}
if (!contTrellisRD)
{
return;
}
// best state at the last scan position
double sumRdCost = MAX_DOUBLE;
uint8_t bestState = 0;
for (uint8_t state = 0; state < NUM_TRELLIS_STATE; state++)
{
if (m_stateCostRDOQ[0][state] < sumRdCost)
{
sumRdCost = m_stateCostRDOQ[0][state];
bestState = state;
}
}
bool checkRunTable [MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t checkIndexTable[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t bestStateTable [MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t nextState = bestState;
// best trellis path
for (int i = (width*height - 1); i >= 0; i--)
{
bestStateTable[i] = nextState;
int rasterPos = m_scanOrder[i].idx;
nextState = m_statePtRDOQ[nextState][rasterPos];
}
// reconstruct index and runs based on the state pointers
for (int i = 0; i < (width*height); i++)
{
int rasterPos = m_scanOrder[i].idx;
int abovePos = (pltScanMode == PLT_SCAN_HORTRAV) ? m_scanOrder[i].idx - width : m_scanOrder[i].idx - 1;
nextState = bestStateTable[i];
if ( nextState == 0 ) // same as the previous
{
checkRunTable[rasterPos] = checkRunTable[ m_scanOrder[i - 1].idx ];
if ( checkRunTable[rasterPos] == PLT_RUN_INDEX )
{
checkIndexTable[rasterPos] = checkIndexTable[m_scanOrder[i - 1].idx];
}
else
{
checkIndexTable[rasterPos] = checkIndexTable[ abovePos ];
}
}
else if (nextState == 1) // CopyAbove mode
{
checkRunTable[rasterPos] = PLT_RUN_COPY;
checkIndexTable[rasterPos] = checkIndexTable[abovePos];
}
else if (nextState == 2) // Index mode
{
checkRunTable[rasterPos] = PLT_RUN_INDEX;
checkIndexTable[rasterPos] = m_minErrorIndexMap[rasterPos];
}
}
// Escape flag
m_bestEscape = false;
for (int pos = 0; pos < (width*height); pos++)
{
uint8_t index = checkIndexTable[pos];
if (index == cu.curPLTSize[compBegin])