Newer
Older

Karsten Suehring
committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
double d64CostLast = xGetRateLast( lastBitsX, lastBitsY, uiPosX, uiPosY );
double totalCost = d64BaseCost + d64CostLast - pdCostSig[ iScanPos ];
if( totalCost < d64BestCost )
{
iBestLastIdxP1 = iScanPos + 1;
d64BestCost = totalCost;
}
if( piDstCoeff[ uiBlkPos ] > 1 )
{
bFoundLast = true;
break;
}
d64BaseCost -= pdCostCoeff[ iScanPos ];
d64BaseCost += pdCostCoeff0[ iScanPos ];
}
else
{
d64BaseCost -= pdCostSig[ iScanPos ];
}
} //end for
if (bFoundLast)
{
break;
}
} // end if (uiSigCoeffGroupFlag[ uiCGBlkPos ])
DTRACE( g_trace_ctx, D_RDOQ_COST, "%d: %3d, %3d, %dx%d, comp=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_RDOQ_COST ), rect.x, rect.y, rect.width, rect.height, compID );
DTRACE( g_trace_ctx, D_RDOQ_COST, "Uncoded=%d\n", (int64_t)( d64BlockUncodedCost ) );
DTRACE( g_trace_ctx, D_RDOQ_COST, "Coded =%d\n", (int64_t)( d64BaseCost ) );
} // end for
for ( int scanPos = 0; scanPos < iBestLastIdxP1; scanPos++ )
{
int blkPos = cctx.blockPos( scanPos );
TCoeff level = piDstCoeff[ blkPos ];
uiAbsSum += level;
piDstCoeff[ blkPos ] = ( plSrcCoeff[ blkPos ] < 0 ) ? -level : level;
}
//===== clean uncoded coefficients =====
for ( int scanPos = iBestLastIdxP1; scanPos <= iLastScanPos; scanPos++ )
{
piDstCoeff[ cctx.blockPos( scanPos ) ] = 0;
}
if( cctx.signHiding() && uiAbsSum>=2)
{
const double inverseQuantScale = double(g_invQuantScales[0][cQP.rem(isTransformSkip)]);
int64_t rdFactor = (int64_t)(inverseQuantScale * inverseQuantScale * (1 << (2 * cQP.per(isTransformSkip))) / m_dLambda / 16
/ (1 << (2 * DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)))

Karsten Suehring
committed
int lastCG = -1;
int absSum = 0 ;
int n ;
for (int subSet = iCGNum - 1; subSet >= 0; subSet--)

Karsten Suehring
committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
{
int subPos = subSet << cctx.log2CGSize();
int firstNZPosInCG = iCGSizeM1 + 1, lastNZPosInCG = -1;
absSum = 0 ;
for( n = iCGSizeM1; n >= 0; --n )
{
if( piDstCoeff[ cctx.blockPos( n + subPos )] )
{
lastNZPosInCG = n;
break;
}
}
for( n = 0; n <= iCGSizeM1; n++ )
{
if( piDstCoeff[ cctx.blockPos( n + subPos )] )
{
firstNZPosInCG = n;
break;
}
}
for( n = firstNZPosInCG; n <= lastNZPosInCG; n++ )
{
absSum += int(piDstCoeff[ cctx.blockPos( n + subPos )]);
}
if(lastNZPosInCG>=0 && lastCG==-1)
{
lastCG = 1;
}
if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD )
{
uint32_t signbit = (piDstCoeff[cctx.blockPos(subPos+firstNZPosInCG)]>0?0:1);
if( signbit!=(absSum&0x1) ) // hide but need tune
{
// calculate the cost
int64_t minCostInc = std::numeric_limits<int64_t>::max(), curCost = std::numeric_limits<int64_t>::max();
int minPos = -1, finalChange = 0, curChange = 0;
for( n = (lastCG == 1 ? lastNZPosInCG : iCGSizeM1); n >= 0; --n )
{
uint32_t uiBlkPos = cctx.blockPos( n + subPos );
if(piDstCoeff[ uiBlkPos ] != 0 )
{
int64_t costUp = rdFactor * ( - deltaU[uiBlkPos] ) + rateIncUp[uiBlkPos];
int64_t costDown = rdFactor * ( deltaU[uiBlkPos] ) + rateIncDown[uiBlkPos]
- ((abs(piDstCoeff[uiBlkPos]) == 1) ? sigRateDelta[uiBlkPos] : 0);
if(lastCG==1 && lastNZPosInCG==n && abs(piDstCoeff[uiBlkPos])==1)
{
costDown -= (4<<SCALE_BITS);
}
if(costUp<costDown)
{
curCost = costUp;
curChange = 1;
}
else
{
curChange = -1;
if(n==firstNZPosInCG && abs(piDstCoeff[uiBlkPos])==1)
{
curCost = std::numeric_limits<int64_t>::max();
}
else
{
curCost = costDown;
}
}
}
else
{
curCost = rdFactor * ( - (abs(deltaU[uiBlkPos])) ) + (1<<SCALE_BITS) + rateIncUp[uiBlkPos] + sigRateDelta[uiBlkPos] ;
curChange = 1 ;
if(n<firstNZPosInCG)
{
uint32_t thissignbit = (plSrcCoeff[uiBlkPos]>=0?0:1);
if(thissignbit != signbit )
{
curCost = std::numeric_limits<int64_t>::max();
}
}
}
if( curCost<minCostInc)
{
minCostInc = curCost;
finalChange = curChange;
minPos = uiBlkPos;
}
}
if(piDstCoeff[minPos] == entropyCodingMaximum || piDstCoeff[minPos] == entropyCodingMinimum)
{
finalChange = -1;
}
if(plSrcCoeff[minPos]>=0)
{
piDstCoeff[minPos] += finalChange ;
}
else
{
piDstCoeff[minPos] -= finalChange ;
}
}
}
if(lastCG==1)
{
lastCG=0 ;
}
}
}
}
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
void QuantRDOQ::xRateDistOptQuantTS( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &coeffs, TCoeff &absSum, const QpParam &qp, const Ctx &ctx )
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth( chType );
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
int transformShift = getTransformShift( channelBitDepth, rect.size(), maxLog2TrDynamicRange );
if( extendedPrecision )
{
transformShift = std::max<int>( 0, transformShift );
}
double blockUncodedCost = 0;
const uint32_t maxNumCoeff = rect.area();
CHECK( compID >= MAX_NUM_TBLOCKS, "Invalid component ID" );
int scalingListType = getScalingListType( tu.cu->predMode, compID );
CHECK( scalingListType >= SCALING_LIST_NUM, "Invalid scaling list" );
const TCoeff *srcCoeff = coeffs.buf;
TCoeff *dstCoeff = tu.getCoeffs( compID ).buf;
double *costCoeff = m_pdCostCoeff;
double *costSig = m_pdCostSig;
double *costCoeff0 = m_pdCostCoeff0;
memset( m_pdCostCoeff, 0, sizeof( double ) * maxNumCoeff );
memset( m_pdCostSig, 0, sizeof( double ) * maxNumCoeff );
m_bdpcm = 0;
const bool needsSqrt2Scale = TU::needsSqrt2Scale( tu, compID ); // should always be false - transform-skipped blocks don't require sqrt(2) compensation.
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
const int qBits = QUANT_SHIFT + qp.per(isTransformSkip) + transformShift + ( needsSqrt2Scale ? -1 : 0 ); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale?1:0][qp.rem(isTransformSkip)];
const double errorScale = xGetErrScaleCoeff( TU::needsSqrt2Scale( tu, compID ), width, height, qp.rem(isTransformSkip), maxLog2TrDynamicRange, channelBitDepth );
const TCoeff entropyCodingMaximum = ( 1 << maxLog2TrDynamicRange ) - 1;
uint32_t coeffLevels[3];
double coeffLevelError[4];
CoeffCodingContext cctx( tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag() );
const int sbSizeM1 = ( 1 << cctx.log2CGSize() ) - 1;
double baseCost = 0;
uint32_t goRiceParam = 0;
double *costSigSubBlock = m_pdCostCoeffGroupSig;
memset( costSigSubBlock, 0, ( maxNumCoeff >> cctx.log2CGSize() ) * sizeof( double ) );
const int sbNum = width * height >> cctx.log2CGSize();
int scanPos;
coeffGroupRDStats rdStats;
bool anySigCG = false;
#if JVET_P0072_SIMPLIFIED_TSRC
int maxCtxBins = (cctx.maxNumCoeff() * 7) >> 2;
cctx.setNumCtxBins(maxCtxBins);
#endif
for( int sbId = 0; sbId < sbNum; sbId++ )
{
cctx.initSubblock( sbId );
memset( &rdStats, 0, sizeof (coeffGroupRDStats));
#if JVET_P0072_SIMPLIFIED_TSRC
rdStats.iNumSbbCtxBins = 0;
#endif
for( int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++ )
{
scanPos = cctx.minSubPos() + scanPosInSB;
//===== quantization =====
uint32_t blkPos = cctx.blockPos( scanPos );
// set coeff
const int64_t tmpLevel = int64_t( abs( srcCoeff[blkPos] ) ) * quantisationCoefficient;
const Intermediate_Int levelDouble = (Intermediate_Int)std::min<int64_t>( tmpLevel, std::numeric_limits<Intermediate_Int>::max() - ( Intermediate_Int( 1 ) << ( qBits - 1 ) ) );
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
uint32_t roundAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
uint32_t minAbsLevel = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
uint32_t downAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t(levelDouble >> qBits));
uint32_t upAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), downAbsLevel + 1);
m_testedLevels = 0;
coeffLevels[m_testedLevels++] = roundAbsLevel;
if (minAbsLevel != roundAbsLevel)
coeffLevels[m_testedLevels++] = minAbsLevel;
int rightPixel, belowPixel, predPixel;
cctx.neighTS(rightPixel, belowPixel, scanPos, dstCoeff);
predPixel = cctx.deriveModCoeff(rightPixel, belowPixel, upAbsLevel, 0);
if (upAbsLevel != roundAbsLevel && upAbsLevel != minAbsLevel && predPixel == 1)
coeffLevels[m_testedLevels++] = upAbsLevel;
double dErr = double(levelDouble);
coeffLevelError[0] = dErr * dErr * errorScale;
costCoeff0[scanPos] = coeffLevelError[0];
blockUncodedCost += costCoeff0[ scanPos ];
dstCoeff[blkPos] = coeffLevels[0];
//===== coefficient level estimation =====
unsigned ctxIdSig = cctx.sigCtxIdAbsTS( scanPos, dstCoeff );
uint32_t cLevel;
const BinFracBits fracBitsPar = fracBits.getFracBitsArray( cctx.parityCtxIdAbsTS() );
goRiceParam = cctx.templateAbsSumTS( scanPos, dstCoeff );
unsigned ctxIdSign = cctx.signCtxIdAbsTS(scanPos, dstCoeff, 0);
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(ctxIdSign);
const uint8_t sign = srcCoeff[ blkPos ] < 0 ? 1 : 0;
DTRACE_COND( ( coeffLevels[0] != 0 ), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig );
unsigned gt1CtxId = cctx.lrg1CtxIdAbsTS(scanPos, dstCoeff, 0);
const BinFracBits fracBitsGr1 = fracBits.getFracBitsArray(gt1CtxId);
const BinFracBits fracBitsSig = fracBits.getFracBitsArray( ctxIdSig );
bool lastCoeff = false; //
if (scanPosInSB == lastPosCoded && noCoeffCoded == 0)
{
lastCoeff = true;
}
#if JVET_P0072_SIMPLIFIED_TSRC
int numUsedCtxBins = 0;
cLevel = xGetCodedLevelTSPred(costCoeff[scanPos], costCoeff0[scanPos], costSig[scanPos], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange, numUsedCtxBins);
cctx.decimateNumCtxBins(numUsedCtxBins);
rdStats.iNumSbbCtxBins += numUsedCtxBins;
#else
cLevel = xGetCodedLevelTSPred( costCoeff[ scanPos ], costCoeff0[ scanPos ], costSig[ scanPos ], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
TCoeff level = cLevel;
dstCoeff[blkPos] = (level != 0 && srcCoeff[blkPos] < 0) ? -level : level;
baseCost += costCoeff[ scanPos ];
rdStats.d64SigCost += costSig[ scanPos ];
if( dstCoeff[ blkPos ] )
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += costCoeff [ scanPos ] - costSig[ scanPos ];
rdStats.d64UncodedDist += costCoeff0[ scanPos ];
}
} //end for (iScanPosinCG)
if( !cctx.isSigGroup() )
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId( true ) );
baseCost += xGetRateSigCoeffGroup( fracBitsSigGroup, 0 ) - rdStats.d64SigCost;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
#if JVET_P0072_SIMPLIFIED_TSRC
cctx.increaseNumCtxBins(rdStats.iNumSbbCtxBins); // skip sub-block
#endif
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double costZeroSB = baseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId( true ) );
baseCost += xGetRateSigCoeffGroup( fracBitsSigGroup, 1 );
costZeroSB += xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
costSigSubBlock[ cctx.subSetId() ] = xGetRateSigCoeffGroup( fracBitsSigGroup, 1 );
costZeroSB += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
costZeroSB -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
costZeroSB -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
if( costZeroSB < baseCost )
{
cctx.resetSigGroup();
baseCost = costZeroSB;
costSigSubBlock[ cctx.subSetId() ] = xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
#if JVET_P0072_SIMPLIFIED_TSRC
cctx.increaseNumCtxBins(rdStats.iNumSbbCtxBins); // skip sub-block
#endif
for( int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++ )
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
{
scanPos = cctx.minSubPos() + scanPosInSB;
uint32_t blkPos = cctx.blockPos( scanPos );
if( dstCoeff[ blkPos ] )
{
dstCoeff[ blkPos ] = 0;
costCoeff[ scanPos ] = costCoeff0[ scanPos ];
costSig[ scanPos] = 0;
}
}
}
else
{
anySigCG = true;
}
}
}
//===== estimate last position =====
for( int scanPos = 0; scanPos < maxNumCoeff; scanPos++ )
{
int blkPos = cctx.blockPos( scanPos );
TCoeff level = dstCoeff[ blkPos ];
absSum += abs(level);
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
void QuantRDOQ::forwardRDPCM( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &coeffs, TCoeff &absSum, const QpParam &qp, const Ctx &ctx )
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth(chType);
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
const int dirMode = tu.cu->bdpcmMode;
int transformShift = getTransformShift(channelBitDepth, rect.size(), maxLog2TrDynamicRange);
if (extendedPrecision)
{
transformShift = std::max<int>(0, transformShift);
}
double blockUncodedCost = 0;
const uint32_t maxNumCoeff = rect.area();
CHECK(compID >= MAX_NUM_TBLOCKS, "Invalid component ID");
int scalingListType = getScalingListType(tu.cu->predMode, compID);
CHECK(scalingListType >= SCALING_LIST_NUM, "Invalid scaling list");
const TCoeff *srcCoeff = coeffs.buf;
TCoeff *dstCoeff = tu.getCoeffs(compID).buf;
double *costCoeff = m_pdCostCoeff;
double *costSig = m_pdCostSig;
double *costCoeff0 = m_pdCostCoeff0;
memset(m_pdCostCoeff, 0, sizeof(double) * maxNumCoeff);
memset(m_pdCostSig, 0, sizeof(double) * maxNumCoeff);
memset(m_fullCoeff, 0, sizeof(TCoeff) * maxNumCoeff);
m_bdpcm = dirMode;
const bool needsSqrt2Scale = TU::needsSqrt2Scale(tu, compID); // should always be false - transform-skipped blocks don't require sqrt(2) compensation.
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
const int qBits = QUANT_SHIFT + qp.per(isTransformSkip) + transformShift + ( needsSqrt2Scale ? -1 : 0 ); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale ? 1 : 0][qp.rem(isTransformSkip)];
const double errorScale = xGetErrScaleCoeff(TU::needsSqrt2Scale(tu, compID), width, height, qp.rem(isTransformSkip), maxLog2TrDynamicRange, channelBitDepth);
trQuantParams.rightShift = (IQUANT_SHIFT - (transformShift + qp.per(isTransformSkip)));
trQuantParams.qScale = g_invQuantScales[needsSqrt2Scale ? 1 : 0][qp.rem(isTransformSkip)];
const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1;
uint32_t coeffLevels[3];
double coeffLevelError[4];
CoeffCodingContext cctx(tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag());
const int sbSizeM1 = (1 << cctx.log2CGSize()) - 1;
double baseCost = 0;
uint32_t goRiceParam = 0;
double *costSigSubBlock = m_pdCostCoeffGroupSig;
memset(costSigSubBlock, 0, (maxNumCoeff >> cctx.log2CGSize()) * sizeof(double));
const int sbNum = width * height >> cctx.log2CGSize();
int scanPos;
coeffGroupRDStats rdStats;
bool anySigCG = false;
#if JVET_P0072_SIMPLIFIED_TSRC
int maxCtxBins = (cctx.maxNumCoeff() * 7) >> 2;
cctx.setNumCtxBins(maxCtxBins);
#endif
for (int sbId = 0; sbId < sbNum; sbId++)
{
cctx.initSubblock(sbId);
memset(&rdStats, 0, sizeof(coeffGroupRDStats));
#if JVET_P0072_SIMPLIFIED_TSRC
rdStats.iNumSbbCtxBins = 0;
#endif
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
{
scanPos = cctx.minSubPos() + scanPosInSB;
//===== quantization =====
uint32_t blkPos = cctx.blockPos(scanPos);
const int posX = cctx.posX(scanPos);
const int posY = cctx.posY(scanPos);
const int posS = (1 == dirMode) ? posX : posY;
const int posNb = (1 == dirMode) ? (posX - 1) + posY * coeffs.stride : posX + (posY - 1) * coeffs.stride;
TCoeff predCoeff = (0 != posS) ? m_fullCoeff[posNb] : 0;
// set coeff
const int64_t tmpLevel = int64_t(abs(srcCoeff[blkPos] - predCoeff)) * quantisationCoefficient;
const Intermediate_Int levelDouble = (Intermediate_Int)std::min<int64_t>(tmpLevel, std::numeric_limits<Intermediate_Int>::max() - (Intermediate_Int(1) << (qBits - 1)));
uint32_t roundAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
uint32_t minAbsLevel = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
m_testedLevels = 0;
coeffLevels[m_testedLevels++] = roundAbsLevel;
if (minAbsLevel != roundAbsLevel)
coeffLevels[m_testedLevels++] = minAbsLevel;
double dErr = double(levelDouble);
coeffLevelError[0] = dErr * dErr * errorScale;
costCoeff0[scanPos] = coeffLevelError[0];
blockUncodedCost += costCoeff0[scanPos];
dstCoeff[blkPos] = coeffLevels[0];
//===== coefficient level estimation =====
unsigned ctxIdSig = cctx.sigCtxIdAbsTS(scanPos, dstCoeff);
uint32_t cLevel;
const BinFracBits fracBitsPar = fracBits.getFracBitsArray(cctx.parityCtxIdAbsTS());
goRiceParam = cctx.templateAbsSumTS(scanPos, dstCoeff);
unsigned ctxIdSign = cctx.signCtxIdAbsTS(scanPos, dstCoeff, dirMode);
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(ctxIdSign);
const uint8_t sign = srcCoeff[blkPos] - predCoeff < 0 ? 1 : 0;
unsigned gt1CtxId = cctx.lrg1CtxIdAbsTS(scanPos, dstCoeff, dirMode);
const BinFracBits fracBitsGr1 = fracBits.getFracBitsArray(gt1CtxId);
DTRACE_COND((dstCoeff[blkPos] != 0), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig);
const BinFracBits fracBitsSig = fracBits.getFracBitsArray(ctxIdSig);
bool lastCoeff = false; //
if (scanPosInSB == lastPosCoded && noCoeffCoded == 0)
{
lastCoeff = true;
}
int rightPixel, belowPixel;
cctx.neighTS(rightPixel, belowPixel, scanPos, dstCoeff);
#if JVET_P0072_SIMPLIFIED_TSRC
int numUsedCtxBins = 0;
cLevel = xGetCodedLevelTSPred(costCoeff[scanPos], costCoeff0[scanPos], costSig[scanPos], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange, numUsedCtxBins);
cctx.decimateNumCtxBins(numUsedCtxBins);
rdStats.iNumSbbCtxBins += numUsedCtxBins;
#else
cLevel = xGetCodedLevelTSPred(costCoeff[scanPos], costCoeff0[scanPos], costSig[scanPos], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
dstCoeff[blkPos] = cLevel;
if (sign)
{
dstCoeff[blkPos] = -dstCoeff[blkPos];
}
xDequantSample( m_fullCoeff[blkPos], dstCoeff[blkPos], trQuantParams );
m_fullCoeff[blkPos] += predCoeff;
baseCost += costCoeff[scanPos];
rdStats.d64SigCost += costSig[scanPos];
if (dstCoeff[blkPos])
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += costCoeff[scanPos] - costSig[scanPos];
rdStats.d64UncodedDist += costCoeff0[scanPos];
}
} //end for (iScanPosinCG)
if (!cctx.isSigGroup())
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray(cctx.sigGroupCtxId(true));
baseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 0) - rdStats.d64SigCost;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
#if JVET_P0072_SIMPLIFIED_TSRC
cctx.increaseNumCtxBins(rdStats.iNumSbbCtxBins); // skip sub-block
#endif
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double costZeroSB = baseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray(cctx.sigGroupCtxId(true));
baseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 1);
costZeroSB += xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 1);
costZeroSB += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
costZeroSB -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
costZeroSB -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
if (costZeroSB < baseCost)
{
cctx.resetSigGroup();
baseCost = costZeroSB;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
#if JVET_P0072_SIMPLIFIED_TSRC
cctx.increaseNumCtxBins(rdStats.iNumSbbCtxBins); // skip sub-block
#endif
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
{
scanPos = cctx.minSubPos() + scanPosInSB;
uint32_t blkPos = cctx.blockPos(scanPos);
const int posX = cctx.posX(scanPos);
const int posY = cctx.posY(scanPos);
const int posS = (1 == dirMode) ? posX : posY;
const int posNb = (1 == dirMode) ? (posX - 1) + posY * coeffs.stride : posX + (posY - 1) * coeffs.stride;
m_fullCoeff[scanPos] = (0 != posS) ? m_fullCoeff[posNb] : 0;
if (dstCoeff[blkPos])
{
dstCoeff[blkPos] = 0;
costCoeff[scanPos] = costCoeff0[scanPos];
costSig[scanPos] = 0;
}
}
}
else
{
anySigCG = true;
}
}
}
//===== estimate last position =====
for (int scanPos = 0; scanPos < maxNumCoeff; scanPos++)
{
int blkPos = cctx.blockPos(scanPos);
TCoeff level = dstCoeff[blkPos];
absSum += abs(level);
}
}
void QuantRDOQ::xDequantSample(TCoeff& pRes, TCoeff& coeff, const TrQuantParams& trQuantParams)
{
// xDequant
if (trQuantParams.rightShift > 0)
{
const Intermediate_Int qAdd = Intermediate_Int(1) << (trQuantParams.rightShift - 1);
pRes = TCoeff((Intermediate_Int(coeff) * trQuantParams.qScale + qAdd) >> trQuantParams.rightShift);
}
else
{
pRes = TCoeff((Intermediate_Int(coeff) * trQuantParams.qScale) << -trQuantParams.rightShift);
}
}
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
inline uint32_t QuantRDOQ::xGetCodedLevelTSPred(double& rd64CodedCost,
double& rd64CodedCost0,
double& rd64CodedCostSig,
Intermediate_Int levelDouble,
int qBits,
double errorScale,
uint32_t coeffLevels[],
double coeffLevelError[],
const BinFracBits* fracBitsSig,
const BinFracBits& fracBitsPar,
CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
const BinFracBits& fracBitsGt1,
const uint8_t sign,
int rightPixel,
int belowPixel,
uint16_t ricePar,
bool isLast,
bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange
#if JVET_P0072_SIMPLIFIED_TSRC
, int& numUsedCtxBins
#endif
) const
{
double currCostSig = 0;
uint32_t bestAbsLevel = 0;
#if JVET_P0072_SIMPLIFIED_TSRC
numUsedCtxBins = 0;
int numBestCtxBin = 0;
#endif
if (!isLast && coeffLevels[0] < 3)
{
#if JVET_P0072_SIMPLIFIED_TSRC
if (cctx.numCtxBins() >= 4)
rd64CodedCostSig = xGetRateSigCoef(*fracBitsSig, 0);
else
rd64CodedCostSig = xGetICost(1 << SCALE_BITS);
#else
rd64CodedCostSig = xGetRateSigCoef(*fracBitsSig, 0);
rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig;
#if JVET_P0072_SIMPLIFIED_TSRC
if (cctx.numCtxBins() >= 4)
numUsedCtxBins++;
#endif
if (coeffLevels[0] == 0)
{
return bestAbsLevel;
}
}
else
{
rd64CodedCost = MAX_DOUBLE;
}
if (!isLast)
{
#if JVET_P0072_SIMPLIFIED_TSRC
if (cctx.numCtxBins() >= 4)
currCostSig = xGetRateSigCoef(*fracBitsSig, 1);
else
currCostSig = xGetICost(1 << SCALE_BITS);
#else
currCostSig = xGetRateSigCoef(*fracBitsSig, 1);
#endif
#if JVET_P0072_SIMPLIFIED_TSRC
if (coeffLevels[0] >= 3 && cctx.numCtxBins() >= 4)
numUsedCtxBins++;
#endif
}
for (int errorInd = 1; errorInd <= m_testedLevels; errorInd++)
{
int absLevel = coeffLevels[errorInd - 1];
double dErr = 0.0;
dErr = double(levelDouble - (Intermediate_Int(absLevel) << qBits));
coeffLevelError[errorInd] = dErr * dErr * errorScale;
#if JVET_P0298_DISABLE_LEVELMAPPING_IN_BYPASS
int modAbsLevel = absLevel;
modAbsLevel = cctx.deriveModCoeff(rightPixel, belowPixel, absLevel, m_bdpcm);
}
#else
int modAbsLevel = cctx.deriveModCoeff(rightPixel, belowPixel, absLevel, m_bdpcm);
#if JVET_P0072_SIMPLIFIED_TSRC
int numCtxBins = 0;
double dCurrCost = coeffLevelError[errorInd] + xGetICost(xGetICRateTS(modAbsLevel, fracBitsPar, cctx, fracBitsAccess, fracBitsSign, fracBitsGt1, numCtxBins, sign, ricePar, useLimitedPrefixLength, maxLog2TrDynamicRange));
#else
double dCurrCost = coeffLevelError[errorInd] + xGetICost(xGetICRateTS(modAbsLevel, fracBitsPar, cctx, fracBitsAccess, fracBitsSign, fracBitsGt1, sign, ricePar, useLimitedPrefixLength, maxLog2TrDynamicRange));
#endif
#if JVET_P0072_SIMPLIFIED_TSRC
if (cctx.numCtxBins() >= 4)
dCurrCost += currCostSig; // if cctx.numCtxBins < 4, xGetICRateTS return rate including sign cost. dont need to add any more
#else
dCurrCost += currCostSig;
if (dCurrCost < rd64CodedCost)
{
bestAbsLevel = absLevel;
rd64CodedCost = dCurrCost;
rd64CodedCostSig = currCostSig;
#if JVET_P0072_SIMPLIFIED_TSRC
numBestCtxBin = numCtxBins;
#endif
}
}
#if JVET_P0072_SIMPLIFIED_TSRC
numUsedCtxBins += numBestCtxBin;
#endif
return bestAbsLevel;
}
inline int QuantRDOQ::xGetICRateTS( const uint32_t absLevel,
const BinFracBits& fracBitsPar,
const CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
const BinFracBits& fracBitsGt1,
#if JVET_P0072_SIMPLIFIED_TSRC
int& numCtxBins,
#endif
const uint8_t sign,
const uint16_t ricePar,
const bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange ) const
{
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
#if JVET_P0072_SIMPLIFIED_TSRC
if (cctx.numCtxBins() < 4) // Full by-pass coding
{
int rate = absLevel ? (1 << SCALE_BITS) : 0; // 1 bit to signal sign of non-zero
uint32_t symbol = absLevel;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if (symbol < (threshold << ricePar))
{
length = symbol >> ricePar;
rate += (length + 1 + ricePar) << SCALE_BITS;
}
else if (useLimitedPrefixLength)
{
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> ricePar) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - ricePar) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ricePar) << SCALE_BITS;
}
else
{
length = ricePar;
symbol = symbol - (threshold << ricePar);
while (symbol >= (1 << length))
{
symbol -= (1 << (length++));
}
rate += (threshold + length + 1 - ricePar + length) << SCALE_BITS;
}
return rate;
}
else if (cctx.numCtxBins() >= 4 && cctx.numCtxBins() < 8) // First pass context coding and all by-pass coding ( Sign flag is not counted here)
{
int rate = fracBitsSign.intBits[sign]; // sign bits
if (absLevel)
numCtxBins++;
if (absLevel > 1)
{
rate += fracBitsGt1.intBits[1];
rate += fracBitsPar.intBits[(absLevel - 2) & 1];
numCtxBins += 2;
int cutoffVal = 2;
if (absLevel >= cutoffVal)
{
uint32_t symbol = (absLevel - cutoffVal) >> 1;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if (symbol < (threshold << ricePar))
{
length = symbol >> ricePar;
rate += (length + 1 + ricePar) << SCALE_BITS;
}
else if (useLimitedPrefixLength)
{
const uint32_t maximumPrefixLength = (32 - (COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange));
uint32_t prefixLength = 0;
uint32_t suffix = (symbol >> ricePar) - COEF_REMAIN_BIN_REDUCTION;
while ((prefixLength < maximumPrefixLength) && (suffix > ((2 << prefixLength) - 2)))
{
prefixLength++;
}
const uint32_t suffixLength = (prefixLength == maximumPrefixLength) ? (maxLog2TrDynamicRange - ricePar) : (prefixLength + 1/*separator*/);
rate += (COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ricePar) << SCALE_BITS;
}
else
{
length = ricePar;
symbol = symbol - (threshold << ricePar);
while (symbol >= (1 << length))
{
symbol -= (1 << (length++));
}
rate += (threshold + length + 1 - ricePar + length) << SCALE_BITS;
}
}
}
else if (absLevel == 1)
{
rate += fracBitsGt1.intBits[0];
numCtxBins++;
}
else
{
rate = 0;
}
return rate;
}
#endif
int rate = fracBitsSign.intBits[sign];
#if JVET_P0072_SIMPLIFIED_TSRC
if (absLevel)
numCtxBins++;
#endif
if( absLevel > 1 )
{
rate += fracBitsGt1.intBits[1];
rate += fracBitsPar.intBits[( absLevel - 2 ) & 1];
#if JVET_P0072_SIMPLIFIED_TSRC
numCtxBins += 2;
#endif
int cutoffVal = 2;
const int numGtBins = 4;
for( int i = 0; i < numGtBins; i++ )
{
if( absLevel >= cutoffVal )
{
const uint16_t ctxGtX = cctx.greaterXCtxIdAbsTS( cutoffVal>>1 );
const BinFracBits &fracBitsGtX = fracBitsAccess.getFracBitsArray( ctxGtX );
unsigned gtX = ( absLevel >= ( cutoffVal + 2 ) );
rate += fracBitsGtX.intBits[gtX];
#if JVET_P0072_SIMPLIFIED_TSRC
numCtxBins++;
#endif
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
}
cutoffVal += 2;
}
if( absLevel >= cutoffVal )
{
uint32_t symbol = ( absLevel - cutoffVal ) >> 1;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if( symbol < ( threshold << ricePar ) )
{
length = symbol >> ricePar;
rate += ( length + 1 + ricePar ) << SCALE_BITS;
}
else if( useLimitedPrefixLength )
{
const uint32_t maximumPrefixLength = ( 32 - ( COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange ) );
uint32_t prefixLength = 0;
uint32_t suffix = ( symbol >> ricePar ) - COEF_REMAIN_BIN_REDUCTION;
while( ( prefixLength < maximumPrefixLength ) && ( suffix > ( ( 2 << prefixLength ) - 2 ) ) )
{
prefixLength++;
}
const uint32_t suffixLength = ( prefixLength == maximumPrefixLength ) ? ( maxLog2TrDynamicRange - ricePar ) : ( prefixLength + 1/*separator*/ );
rate += ( COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ricePar ) << SCALE_BITS;
}
else
{
length = ricePar;
symbol = symbol - ( threshold << ricePar );
while( symbol >= ( 1 << length ) )
{
symbol -= ( 1 << ( length++ ) );
}
rate += ( threshold + length + 1 - ricePar + length ) << SCALE_BITS;
}
}
}
else if( absLevel == 1 )
{
rate += fracBitsGt1.intBits[0];
#if JVET_P0072_SIMPLIFIED_TSRC
numCtxBins++;
#endif
}
else
{
rate = 0;
}