Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file UnitPartitioner.h
* \brief Provides a class for partitioning management
*/
#include "UnitPartitioner.h"
#include "CodingStructure.h"
#include "Unit.h"
#include "Slice.h"
#include "UnitTools.h"
#include "Picture.h"
PartLevel::PartLevel()
: split ( CU_DONT_SPLIT )
, parts ( )
, idx ( 0u )
, checkdIfImplicit ( false )
, isImplicit ( false )
, implicitSplit ( CU_DONT_SPLIT )
, firstSubPartSplit ( CU_DONT_SPLIT )
, canQtSplit ( true )
, qgEnable ( true )
, qgChromaEnable ( true )

Karsten Suehring
committed
{
}
PartLevel::PartLevel( const PartSplit _split, const Partitioning& _parts )
: split ( _split )
, parts ( _parts )
, idx ( 0u )
, checkdIfImplicit ( false )
, isImplicit ( false )
, implicitSplit ( CU_DONT_SPLIT )
, firstSubPartSplit ( CU_DONT_SPLIT )
, canQtSplit ( true )
, qgEnable ( true )
, qgChromaEnable ( true )

Karsten Suehring
committed
{
}
PartLevel::PartLevel( const PartSplit _split, Partitioning&& _parts )
: split ( _split )
, parts ( std::forward<Partitioning>( _parts ) )
, idx ( 0u )
, checkdIfImplicit ( false )
, isImplicit ( false )
, implicitSplit ( CU_DONT_SPLIT )
, firstSubPartSplit ( CU_DONT_SPLIT )
, canQtSplit ( true )
, qgEnable ( true )
, qgChromaEnable ( true )

Karsten Suehring
committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
{
}
//////////////////////////////////////////////////////////////////////////
// Partitioner class
//////////////////////////////////////////////////////////////////////////
SplitSeries Partitioner::getSplitSeries() const
{
SplitSeries splitSeries = 0;
SplitSeries depth = 0;
for( const auto &level : m_partStack )
{
if( level.split == CTU_LEVEL ) continue;
else splitSeries += static_cast< SplitSeries >( level.split ) << ( depth * SPLIT_DMULT );
depth++;
}
return splitSeries;
}
void Partitioner::setCUData( CodingUnit& cu )
{
cu.depth = currDepth;
cu.btDepth = currBtDepth;
cu.mtDepth = currMtDepth;
cu.qtDepth = currQtDepth;
cu.splitSeries = getSplitSeries();
}
void Partitioner::copyState( const Partitioner& other )
{
m_partStack = other.m_partStack;
currBtDepth = other.currBtDepth;
currQtDepth = other.currQtDepth;
currDepth = other.currDepth;
currMtDepth = other.currMtDepth;
currTrDepth = other.currTrDepth;
currSubdiv = other.currSubdiv;
currQgPos = other.currQgPos;
currQgChromaPos = other.currQgChromaPos;

Karsten Suehring
committed
currImplicitBtDepth
= other.currImplicitBtDepth;
chType = other.chType;
#ifdef _DEBUG
m_currArea = other.m_currArea;
#endif
}
//////////////////////////////////////////////////////////////////////////
// AdaptiveDepthPartitioner class
//////////////////////////////////////////////////////////////////////////
void AdaptiveDepthPartitioner::setMaxMinDepth( unsigned& minDepth, unsigned& maxDepth, const CodingStructure& cs ) const
{
unsigned stdMinDepth = 0;
unsigned stdMaxDepth = ( g_aucLog2[cs.sps->getCTUSize()] - g_aucLog2[cs.sps->getMinQTSize( cs.slice->getSliceType(), chType )]);

Karsten Suehring
committed
const Position pos = currArea().blocks[chType].pos();
const unsigned curSliceIdx = cs.slice->getIndependentSliceIdx();
#if HEVC_TILES_WPP
const unsigned curTileIdx = cs.picture->tileMap->getTileIdxMap( currArea().lumaPos() );
const CodingUnit* cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), curSliceIdx, curTileIdx, chType );
const CodingUnit* cuBelowLeft = cs.getCURestricted( pos.offset( -1, currArea().blocks[chType].height), curSliceIdx, curTileIdx, chType );
const CodingUnit* cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), curSliceIdx, curTileIdx, chType );
const CodingUnit* cuAboveRight = cs.getCURestricted( pos.offset( currArea().blocks[chType].width, -1 ), curSliceIdx, curTileIdx, chType );

Karsten Suehring
committed
#else
const CodingUnit* cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), curSliceIdx, chType );
const CodingUnit* cuBelowLeft = cs.getCURestricted( pos.offset( -1, currArea().blocks[chType].height), curSliceIdx, chType );
const CodingUnit* cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), curSliceIdx, chType );
const CodingUnit* cuAboveRight = cs.getCURestricted( pos.offset( currArea().blocks[chType].width, -1 ), curSliceIdx, chType );

Karsten Suehring
committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#endif
minDepth = stdMaxDepth;
maxDepth = stdMinDepth;
if( cuLeft )
{
minDepth = std::min<unsigned>( minDepth, cuLeft->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuLeft->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
if( cuBelowLeft )
{
minDepth = std::min<unsigned>( minDepth, cuBelowLeft->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuBelowLeft->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
if( cuAbove )
{
minDepth = std::min<unsigned>( minDepth, cuAbove->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuAbove->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
if( cuAboveRight )
{
minDepth = std::min<unsigned>( minDepth, cuAboveRight->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuAboveRight->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
minDepth = ( minDepth >= 1 ? minDepth - 1 : 0 );
maxDepth = std::min<unsigned>( stdMaxDepth, maxDepth + 1 );
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// QTBTPartitioner
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
void QTBTPartitioner::initCtu( const UnitArea& ctuArea, const ChannelType _chType, const Slice& slice )
{
#if _DEBUG
m_currArea = ctuArea;
#endif
currDepth = 0;
currTrDepth = 0;
currBtDepth = 0;
currMtDepth = 0;
currQtDepth = 0;
currSubdiv = 0;
currQgPos = ctuArea.lumaPos();
currQgChromaPos = ctuArea.chromaPos();

Karsten Suehring
committed
currImplicitBtDepth = 0;
chType = _chType;
m_partStack.clear();
m_partStack.push_back( PartLevel( CTU_LEVEL, Partitioning{ ctuArea } ) );
}
void QTBTPartitioner::splitCurrArea( const PartSplit split, const CodingStructure& cs )
{
CHECKD( !canSplit( split, cs ), "Trying to apply a prohibited split!" );
bool isImplicit = isSplitImplicit( split, cs );
bool canQtSplit = canSplit( CU_QUAD_SPLIT, cs );
bool qgEnable = currQgEnable();
bool qgChromaEnable = currQgChromaEnable();

Karsten Suehring
committed
switch( split )
{
case CU_QUAD_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getCUSubPartitions( currArea(), cs ) ) );
break;
case CU_HORZ_SPLIT:
case CU_VERT_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getCUSubPartitions( currArea(), cs, split ) ) );
break;
case CU_TRIH_SPLIT:
case CU_TRIV_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getCUSubPartitions( currArea(), cs, split ) ) );
break;
case TU_MAX_TR_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getMaxTuTiling( currArea(), cs ) ) );
break;
case SBT_VER_HALF_POS0_SPLIT:
case SBT_VER_HALF_POS1_SPLIT:
case SBT_HOR_HALF_POS0_SPLIT:
case SBT_HOR_HALF_POS1_SPLIT:
case SBT_VER_QUAD_POS0_SPLIT:
case SBT_VER_QUAD_POS1_SPLIT:
case SBT_HOR_QUAD_POS0_SPLIT:
case SBT_HOR_QUAD_POS1_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getSbtTuTiling( currArea(), cs, split ) ) );
break;

Karsten Suehring
committed
default:
THROW( "Unknown split mode" );
break;
}
currDepth++;

Karsten Suehring
committed
#if _DEBUG
m_currArea = m_partStack.back().parts.front();
#endif
if( split == TU_MAX_TR_SPLIT )
{
currTrDepth++;
}
else if( split >= SBT_VER_HALF_POS0_SPLIT && split <= SBT_HOR_QUAD_POS1_SPLIT )
{
currTrDepth++;
}

Karsten Suehring
committed
else
{
currTrDepth = 0;
}
if( split == CU_HORZ_SPLIT || split == CU_VERT_SPLIT || split == CU_TRIH_SPLIT || split == CU_TRIV_SPLIT )
{
currBtDepth++;
if( isImplicit ) currImplicitBtDepth++;
currMtDepth++;
if( split == CU_TRIH_SPLIT || split == CU_TRIV_SPLIT )
{
// first and last part of triple split are equivalent to double bt split
currBtDepth++;

Karsten Suehring
committed
}
m_partStack.back().canQtSplit = canQtSplit;
}
else if( split == CU_QUAD_SPLIT )
{
CHECK( currBtDepth > 0, "Cannot split a non-square area other than with a binary split" );
CHECK( currMtDepth > 0, "Cannot split a non-square area other than with a binary split" );
currMtDepth = 0;
currBtDepth = 0;
currQtDepth++;

Karsten Suehring
committed
}
qgEnable &= (currSubdiv <= cs.pps->getCuQpDeltaSubdiv());
qgChromaEnable &= (currSubdiv <= cs.pps->getPpsRangeExtension().getCuChromaQpOffsetSubdiv());
m_partStack.back().qgEnable = qgEnable;
m_partStack.back().qgChromaEnable = qgChromaEnable;
if (qgEnable)
currQgPos = currArea().lumaPos();
if (qgChromaEnable)
currQgChromaPos = currArea().chromaPos();

Karsten Suehring
committed
}
void QTBTPartitioner::canSplit( const CodingStructure &cs, bool& canNo, bool& canQt, bool& canBh, bool& canBv, bool& canTh, bool& canTv )
{
const PartSplit implicitSplit = m_partStack.back().checkdIfImplicit ? m_partStack.back().implicitSplit : getImplicitSplit( cs );
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
const unsigned maxBTD = cs.pcv->getMaxBtDepth( *cs.slice, chType ) + currImplicitBtDepth;
const unsigned maxBtSize = cs.pcv->getMaxBtSize ( *cs.slice, chType );
const unsigned minBtSize = cs.pcv->getMinBtSize ( *cs.slice, chType );
const unsigned maxTtSize = cs.pcv->getMaxTtSize ( *cs.slice, chType );
const unsigned minTtSize = cs.pcv->getMinTtSize ( *cs.slice, chType );
const unsigned minQtSize = cs.pcv->getMinQtSize ( *cs.slice, chType );
canNo = canQt = canBh = canTh = canBv = canTv = true;
bool canBtt = currMtDepth < maxBTD;
// the minimal and maximal sizes are given in luma samples
const CompArea& area = currArea().Y();
PartLevel& level = m_partStack.back();
const PartSplit lastSplit = level.split;
const PartSplit parlSplit = lastSplit == CU_TRIH_SPLIT ? CU_HORZ_SPLIT : CU_VERT_SPLIT;
// don't allow QT-splitting below a BT split
if( lastSplit != CTU_LEVEL && lastSplit != CU_QUAD_SPLIT ) canQt = false;
if( area.width <= minQtSize ) canQt = false;
if( implicitSplit != CU_DONT_SPLIT )
{
canNo = canTh = canTv = false;
canBh = implicitSplit == CU_HORZ_SPLIT;
canBv = implicitSplit == CU_VERT_SPLIT;
return;
}
if( ( lastSplit == CU_TRIH_SPLIT || lastSplit == CU_TRIV_SPLIT ) && currPartIdx() == 1 )
{
canBh = parlSplit != CU_HORZ_SPLIT;
canBv = parlSplit != CU_VERT_SPLIT;
}
if( canBtt && ( area.width <= minBtSize && area.height <= minBtSize )
&& ( ( area.width <= minTtSize && area.height <= minTtSize ) ) )
{
canBtt = false;
}
if( canBtt && ( area.width > maxBtSize || area.height > maxBtSize )
&& ( ( area.width > maxTtSize || area.height > maxTtSize ) ) )
if( !canBtt )
{
canBh = canTh = canBv = canTv = false;
return;
}
// specific check for BT splits
if( area.height <= minBtSize || area.height > maxBtSize ) canBh = false;
if( area.width > MAX_TB_SIZEY && area.height <= MAX_TB_SIZEY ) canBh = false;
if( area.width <= minBtSize || area.width > maxBtSize ) canBv = false;
if( area.width <= MAX_TB_SIZEY && area.height > MAX_TB_SIZEY ) canBv = false;
if( area.height <= 2 * minTtSize || area.height > maxTtSize || area.width > maxTtSize )
if( area.width > MAX_TB_SIZEY || area.height > MAX_TB_SIZEY ) canTh = false;
if( area.width <= 2 * minTtSize || area.width > maxTtSize || area.height > maxTtSize )
canTv = false;
if( area.width > MAX_TB_SIZEY || area.height > MAX_TB_SIZEY ) canTv = false;

Karsten Suehring
committed
bool QTBTPartitioner::canSplit( const PartSplit split, const CodingStructure &cs )
{
#if MAX_TB_SIZE_SIGNALLING
const unsigned maxTrSize = cs.sps->getMaxTbSize();
#else
const unsigned maxTrSize = MAX_TB_SIZEY;
#endif
bool canNo, canQt, canBh, canTh, canBv, canTv;
canSplit( cs, canNo, canQt, canBh, canBv, canTh, canTv );

Karsten Suehring
committed
switch( split )
{
case CTU_LEVEL:
THROW( "Checking if top level split is possible" );
return true;
break;
case TU_MAX_TR_SPLIT:
return area.width > maxTrSize || area.height > maxTrSize;
break;
case SBT_VER_HALF_POS0_SPLIT:
case SBT_VER_HALF_POS1_SPLIT:
case SBT_HOR_HALF_POS0_SPLIT:
case SBT_HOR_HALF_POS1_SPLIT:
case SBT_VER_QUAD_POS0_SPLIT:
case SBT_VER_QUAD_POS1_SPLIT:
case SBT_HOR_QUAD_POS0_SPLIT:
case SBT_HOR_QUAD_POS1_SPLIT:
return currTrDepth == 0;
break;
case CU_QUAD_SPLIT:
return canQt;
case CU_DONT_SPLIT:
return canNo;
case CU_HORZ_SPLIT:
return canBh;
case CU_VERT_SPLIT:
return canBv;
case CU_TRIH_SPLIT:
return canTh;
case CU_TRIV_SPLIT:
return canTv;

Karsten Suehring
committed
case CU_MT_SPLIT:

Karsten Suehring
committed
case CU_BT_SPLIT:

Karsten Suehring
committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
break;
default:
THROW( "Unknown split mode" );
return false;
break;
}
return true;
}
bool QTBTPartitioner::isSplitImplicit( const PartSplit split, const CodingStructure &cs )
{
return split == getImplicitSplit( cs );
}
PartSplit QTBTPartitioner::getImplicitSplit( const CodingStructure &cs )
{
if( m_partStack.back().checkdIfImplicit )
{
return m_partStack.back().implicitSplit;
}
PartSplit split = CU_DONT_SPLIT;
if( split == CU_DONT_SPLIT )
{
const bool isBlInPic = cs.picture->Y().contains( currArea().Y().bottomLeft() );
const bool isTrInPic = cs.picture->Y().contains( currArea().Y().topRight() );
const CompArea& area = currArea().Y();
const unsigned maxBtSize = cs.pcv->getMaxBtSize( *cs.slice, chType );
const bool isBtAllowed = area.width <= maxBtSize && area.height <= maxBtSize;
const unsigned minQtSize = cs.pcv->getMinQtSize( *cs.slice, chType );
const bool isQtAllowed = area.width > minQtSize && area.height > minQtSize && currBtDepth == 0;
if( !isBlInPic && !isTrInPic && isQtAllowed )
{
split = CU_QUAD_SPLIT;
}
else if( !isBlInPic && isBtAllowed )
{
split = CU_HORZ_SPLIT;
}
else if( !isTrInPic && isBtAllowed )
{
split = CU_VERT_SPLIT;
}
else if( !isBlInPic || !isTrInPic )
{
split = CU_QUAD_SPLIT;
}
if (CS::isDualITree(cs) && (currArea().Y().width > 64 || currArea().Y().height > 64))
{
split = CU_QUAD_SPLIT;
}
if ((!isBlInPic || !isTrInPic) && (currArea().Y().width > MAX_TB_SIZEY || currArea().Y().height > MAX_TB_SIZEY))
Xiang Li
committed
{
split = CU_QUAD_SPLIT;
}

Karsten Suehring
committed
}
m_partStack.back().checkdIfImplicit = true;
m_partStack.back().isImplicit = split != CU_DONT_SPLIT;
m_partStack.back().implicitSplit = split;
return split;
}
void QTBTPartitioner::exitCurrSplit()
{
PartSplit currSplit = m_partStack.back().split;
unsigned currIdx = m_partStack.back().idx;
m_partStack.pop_back();
CHECK( currDepth == 0, "depth is '0', although a split was performed" );
currDepth--;
if( currQgEnable() )
currQgPos = currArea().lumaPos();
if( currQgChromaEnable() )
currQgChromaPos = currArea().chromaPos();

Karsten Suehring
committed
#if _DEBUG
m_currArea = m_partStack.back().parts[m_partStack.back().idx];
#endif
if( currSplit == CU_HORZ_SPLIT || currSplit == CU_VERT_SPLIT || currSplit == CU_TRIH_SPLIT || currSplit == CU_TRIV_SPLIT )
{
CHECK( !m_partStack.back().checkdIfImplicit, "Didn't check if the current split is implicit" );
CHECK( currBtDepth == 0, "BT depth is '0', athough a BT split was performed" );
CHECK( currMtDepth == 0, "MT depth is '0', athough a BT split was performed" );
currMtDepth--;
if( m_partStack.back().isImplicit ) currImplicitBtDepth--;
currBtDepth--;
if( ( currSplit == CU_TRIH_SPLIT || currSplit == CU_TRIV_SPLIT ) && currIdx != 1 )
{
CHECK( currBtDepth == 0, "BT depth is '0', athough a TT split was performed" );
currBtDepth--;

Karsten Suehring
committed
}
}
else if( currSplit == TU_MAX_TR_SPLIT )
{
CHECK( currTrDepth == 0, "TR depth is '0', although a TU split was performed" );
currTrDepth--;
}
else if( currSplit >= SBT_VER_HALF_POS0_SPLIT && currSplit <= SBT_HOR_QUAD_POS1_SPLIT )
{
CHECK( currTrDepth == 0, "TR depth is '0', although a TU split was performed" );
currTrDepth--;
}

Karsten Suehring
committed
else
{
CHECK( currTrDepth > 0, "RQT found with QTBT partitioner" );
CHECK( currQtDepth == 0, "QT depth is '0', although a QT split was performed" );
currQtDepth--;

Karsten Suehring
committed
}
}
bool QTBTPartitioner::nextPart( const CodingStructure &cs, bool autoPop /*= false*/ )
{
const Position &prevPos = currArea().blocks[chType].pos();
unsigned currIdx = ++m_partStack.back().idx;
m_partStack.back().checkdIfImplicit = false;
m_partStack.back().isImplicit = false;
if( currIdx == 1 )
{
const CodingUnit* prevCU = cs.getCU( prevPos, chType );
m_partStack.back().firstSubPartSplit = prevCU ? CU::getSplitAtDepth( *prevCU, currDepth ) : CU_DONT_SPLIT;
}
if( currIdx < m_partStack.back().parts.size() )
{
if( m_partStack.back().split == CU_TRIH_SPLIT || m_partStack.back().split == CU_TRIV_SPLIT )
{
// adapt the current bt depth
if( currIdx == 1 ) currBtDepth--;
else currBtDepth++;
if( currIdx == 1 ) currSubdiv--;
else currSubdiv++;

Karsten Suehring
committed
}
if( currQgEnable() )
currQgPos = currArea().lumaPos();
if( currQgChromaEnable() )
currQgChromaPos = currArea().chromaPos();

Karsten Suehring
committed
#if _DEBUG
m_currArea = m_partStack.back().parts[currIdx];
#endif
return true;
}
else
{
if( autoPop ) exitCurrSplit();
return false;
}
}
bool QTBTPartitioner::hasNextPart()
{
return ( ( m_partStack.back().idx + 1 ) < m_partStack.back().parts.size() );
}
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
void TUIntraSubPartitioner::splitCurrArea( const PartSplit split, const CodingStructure& cs )
{
switch( split )
{
case TU_1D_HORZ_SPLIT:
case TU_1D_VERT_SPLIT:
{
const UnitArea &area = currArea();
m_partStack.push_back( PartLevel() );
m_partStack.back().split = split;
PartitionerImpl::getTUIntraSubPartitions( m_partStack.back().parts, area, cs, split );
break;
}
case TU_MAX_TR_SPLIT: //we need this non ISP split because of the maxTrSize limitation
m_partStack.push_back( PartLevel( split, PartitionerImpl::getMaxTuTiling( currArea(), cs ) ) );
break;
default:
THROW( "Unknown ISP split mode" );
break;
}
currDepth++;
currTrDepth++; // we need this to identify the level. since the 1d partitions are forbidden if the RQT is on, there area no compatibility issues
#if _DEBUG
m_currArea = m_partStack.back().parts.front();
#endif
}
void TUIntraSubPartitioner::exitCurrSplit()
{
PartSplit currSplit = m_partStack.back().split;
m_partStack.pop_back();
CHECK( currDepth == 0, "depth is '0', although a split was performed" );
currDepth--;
currTrDepth--;
#if _DEBUG
m_currArea = m_partStack.back().parts[m_partStack.back().idx];
#endif
CHECK( !( currSplit == TU_1D_HORZ_SPLIT || currSplit == TU_1D_VERT_SPLIT || currSplit == TU_MAX_TR_SPLIT ), "Unknown 1D partition split type!" );
}
bool TUIntraSubPartitioner::nextPart( const CodingStructure &cs, bool autoPop /*= false*/ )
{
unsigned currIdx = ++m_partStack.back().idx;
m_partStack.back().checkdIfImplicit = false;
m_partStack.back().isImplicit = false;
if( currIdx < m_partStack.back().parts.size() )
{
#if _DEBUG
m_currArea = m_partStack.back().parts[m_partStack.back().idx];
#endif
return true;
}
else
{
if( autoPop ) exitCurrSplit();
return false;
}
}
bool TUIntraSubPartitioner::hasNextPart()
{
return ( ( m_partStack.back().idx + 1 ) < m_partStack.back().parts.size() );
}
bool TUIntraSubPartitioner::canSplit( const PartSplit split, const CodingStructure &cs )
{
//const PartSplit implicitSplit = getImplicitSplit(cs);
const UnitArea &area = currArea();
switch( split )
{
case TU_1D_HORZ_SPLIT:
{
return area.lheight() == m_partStack[0].parts[0].lheight();
}
case TU_1D_VERT_SPLIT:
{
return area.lwidth() == m_partStack[0].parts[0].lwidth();
}
case TU_MAX_TR_SPLIT:
{
//this split is performed implicitly with the other splits
return false;
}
default:
THROW( "Unknown 1-D split mode" );
break;
}
}

Karsten Suehring
committed
//////////////////////////////////////////////////////////////////////////
// PartitionerFactory
//////////////////////////////////////////////////////////////////////////
Partitioner* PartitionerFactory::get( const Slice& slice )
{

Karsten Suehring
committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
}
//////////////////////////////////////////////////////////////////////////
// Partitioner methods describing the actual partitioning logic
//////////////////////////////////////////////////////////////////////////
Partitioning PartitionerImpl::getCUSubPartitions( const UnitArea &cuArea, const CodingStructure &cs, const PartSplit _splitType /*= CU_QUAD_SPLIT*/ )
{
const PartSplit splitType = _splitType;
if( splitType == CU_QUAD_SPLIT )
{
if( !cs.pcv->noChroma2x2 )
{
Partitioning sub;
sub.resize( 4, cuArea );
for( uint32_t i = 0; i < 4; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.height >>= 1;
blk.width >>= 1;
if( i >= 2 ) blk.y += blk.height;
if( i & 1 ) blk.x += blk.width;
}
CHECK( sub[i].lumaSize().height < MIN_TB_SIZEY, "the split causes the block to be smaller than the minimal TU size" );

Karsten Suehring
committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
}
return sub;
}
else
{
const uint32_t minCUSize = ( cs.sps->getMaxCUWidth() >> cs.sps->getMaxCodingDepth() );
bool canSplit = cuArea.lumaSize().width > minCUSize && cuArea.lumaSize().height > minCUSize;
Partitioning ret;
if( cs.slice->getSliceType() == I_SLICE )
{
canSplit &= cuArea.lumaSize().width > cs.pcv->minCUWidth && cuArea.lumaSize().height > cs.pcv->minCUHeight;
}
if( canSplit )
{
ret.resize( 4 );
if( cuArea.chromaFormat == CHROMA_400 )
{
CompArea blkY = cuArea.Y();
blkY.width >>= 1;
blkY.height >>= 1;
ret[0] = UnitArea( cuArea.chromaFormat, blkY );
blkY.x += blkY.width;
ret[1] = UnitArea( cuArea.chromaFormat, blkY );
blkY.x -= blkY.width;
blkY.y += blkY.height;
ret[2] = UnitArea( cuArea.chromaFormat, blkY );
blkY.x += blkY.width;
ret[3] = UnitArea( cuArea.chromaFormat, blkY );
}
else
{
for( uint32_t i = 0; i < 4; i++ )
{
ret[i] = cuArea;
CompArea &blkY = ret[i].Y();
CompArea &blkCb = ret[i].Cb();
CompArea &blkCr = ret[i].Cr();
blkY.width /= 2;
blkY.height /= 2;
// TODO: get those params from SPS
if( blkCb.width > 4 )
{
blkCb.width /= 2;
blkCb.height /= 2;
blkCr.width /= 2;
blkCr.height /= 2;
}
else if( i > 0 )
{
blkCb = CompArea();
blkCr = CompArea();
}
if( ( i & 1 ) == 1 )
{
blkY.x += blkY .width;
blkCb.x += blkCb.width;
blkCr.x += blkCr.width;
}
if( i > 1 )
{
blkY.y += blkY .height;
blkCb.y += blkCb.height;
blkCr.y += blkCr.height;
}
}
}
}
return ret;
}
}
else if( splitType == CU_HORZ_SPLIT )
{
Partitioning sub;
sub.resize(2, cuArea);
for (uint32_t i = 0; i < 2; i++)
{
for (auto &blk : sub[i].blocks)
{
blk.height >>= 1;
if (i == 1) blk.y += blk.height;
}
CHECK(sub[i].lumaSize().height < MIN_TB_SIZEY, "the cs split causes the block to be smaller than the minimal TU size");

Karsten Suehring
committed
}
return sub;
}
else if( splitType == CU_VERT_SPLIT )
{
Partitioning sub;
sub.resize( 2, cuArea );
for( uint32_t i = 0; i < 2; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.width >>= 1;
if( i == 1 ) blk.x += blk.width;
}
CHECK( sub[i].lumaSize().width < MIN_TB_SIZEY, "the split causes the block to be smaller than the minimal TU size" );

Karsten Suehring
committed
}
return sub;
}
else if( splitType == CU_TRIH_SPLIT )
{
Partitioning sub;
sub.resize( 3, cuArea );
for( int i = 0; i < 3; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.height >>= 1;
if( ( i + 1 ) & 1 ) blk.height >>= 1;
if( i == 1 ) blk.y += blk.height / 2;
if( i == 2 ) blk.y += 3 * blk.height;
}
CHECK( sub[i].lumaSize().height < MIN_TB_SIZEY, "the cs split causes the block to be smaller than the minimal TU size" );

Karsten Suehring
committed
}
return sub;
}
else if( splitType == CU_TRIV_SPLIT )
{
Partitioning sub;
sub.resize( 3, cuArea );
for( int i = 0; i < 3; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.width >>= 1;
if( ( i + 1 ) & 1 ) blk.width >>= 1;
if( i == 1 ) blk.x += blk.width / 2;
if( i == 2 ) blk.x += 3 * blk.width;
}
CHECK( sub[i].lumaSize().width < MIN_TB_SIZEY, "the cs split causes the block to be smaller than the minimal TU size" );

Karsten Suehring
committed
}
return sub;
}
else
{
THROW( "Unknown CU sub-partitioning" );
return Partitioning();
}
}
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
void PartitionerImpl::getTUIntraSubPartitions( Partitioning &sub, const UnitArea &tuArea, const CodingStructure &cs, const PartSplit splitType )
{
uint32_t nPartitions;
uint32_t splitDimensionSize = CU::getISPSplitDim( tuArea.lumaSize().width, tuArea.lumaSize().height, splitType );
bool isDualTree = CS::isDualITree( cs );
if( splitType == TU_1D_HORZ_SPLIT )
{
nPartitions = tuArea.lumaSize().height >> g_aucLog2[splitDimensionSize];
sub.resize( nPartitions );
for( uint32_t i = 0; i < nPartitions; i++ )
{
sub[i] = tuArea;
CompArea& blkY = sub[i].blocks[COMPONENT_Y];
blkY.height = splitDimensionSize;
blkY.y = i > 0 ? sub[i - 1].blocks[COMPONENT_Y].y + splitDimensionSize : blkY.y;
CHECK( sub[i].lumaSize().height < 1, "the cs split causes the block to be smaller than the minimal TU size" );
}
}
else if( splitType == TU_1D_VERT_SPLIT )
{
nPartitions = tuArea.lumaSize().width >> g_aucLog2[splitDimensionSize];
sub.resize( nPartitions );
for( uint32_t i = 0; i < nPartitions; i++ )
{
sub[i] = tuArea;
CompArea& blkY = sub[i].blocks[COMPONENT_Y];
blkY.width = splitDimensionSize;
blkY.x = i > 0 ? sub[i - 1].blocks[COMPONENT_Y].x + splitDimensionSize : blkY.x;
CHECK( sub[i].lumaSize().width < 1, "the split causes the block to be smaller than the minimal TU size" );
}
}
else
{
THROW( "Unknown TU sub-partitioning" );
}
//we only partition luma, so there is going to be only one chroma tu at the end (unless it is dual tree, in which case there won't be any chroma components)
uint32_t partitionsWithoutChroma = isDualTree ? nPartitions : nPartitions - 1;
for( uint32_t i = 0; i < partitionsWithoutChroma; i++ )
{
CompArea& blkCb = sub[i].blocks[COMPONENT_Cb];
CompArea& blkCr = sub[i].blocks[COMPONENT_Cr];
blkCb = CompArea();
blkCr = CompArea();
}
}

Karsten Suehring
committed
static const int g_maxRtGridSize = 3;
static const int g_zScanToX[1 << ( g_maxRtGridSize << 1 )] =
{
0, 1, 0, 1, 2, 3, 2, 3,
0, 1, 0, 1, 2, 3, 2, 3,
4, 5, 4, 5, 6, 7, 6, 7,
4, 5, 4, 5, 6, 7, 6, 7,
0, 1, 0, 1, 2, 3, 2, 3,
0, 1, 0, 1, 2, 3, 2, 3,
4, 5, 4, 5, 6, 7, 6, 7,
4, 5, 4, 5, 6, 7, 6, 7,
};