Newer
Older

Karsten Suehring
committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
d64BestCost = totalCost;
}
if( piDstCoeff[ uiBlkPos ] > 1 )
{
bFoundLast = true;
break;
}
d64BaseCost -= pdCostCoeff[ iScanPos ];
d64BaseCost += pdCostCoeff0[ iScanPos ];
}
else
{
d64BaseCost -= pdCostSig[ iScanPos ];
}
} //end for
if (bFoundLast)
{
break;
}
} // end if (uiSigCoeffGroupFlag[ uiCGBlkPos ])
DTRACE( g_trace_ctx, D_RDOQ_COST, "%d: %3d, %3d, %dx%d, comp=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_RDOQ_COST ), rect.x, rect.y, rect.width, rect.height, compID );
DTRACE( g_trace_ctx, D_RDOQ_COST, "Uncoded=%d\n", (int64_t)( d64BlockUncodedCost ) );
DTRACE( g_trace_ctx, D_RDOQ_COST, "Coded =%d\n", (int64_t)( d64BaseCost ) );
} // end for
for ( int scanPos = 0; scanPos < iBestLastIdxP1; scanPos++ )
{
int blkPos = cctx.blockPos( scanPos );
TCoeff level = piDstCoeff[ blkPos ];
uiAbsSum += level;
piDstCoeff[ blkPos ] = ( plSrcCoeff[ blkPos ] < 0 ) ? -level : level;
}
//===== clean uncoded coefficients =====
for ( int scanPos = iBestLastIdxP1; scanPos <= iLastScanPos; scanPos++ )
{
piDstCoeff[ cctx.blockPos( scanPos ) ] = 0;
}
if( cctx.signHiding() && uiAbsSum>=2)
{
const double inverseQuantScale = double(g_invQuantScales[0][cQP.rem(isTransformSkip)]);
int64_t rdFactor = (int64_t)(inverseQuantScale * inverseQuantScale * (1 << (2 * cQP.per(isTransformSkip))) / m_dLambda / 16
/ (1 << (2 * DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)))

Karsten Suehring
committed
int lastCG = -1;
int absSum = 0 ;
int n ;
for (int subSet = iCGNum - 1; subSet >= 0; subSet--)

Karsten Suehring
committed
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
{
int subPos = subSet << cctx.log2CGSize();
int firstNZPosInCG = iCGSizeM1 + 1, lastNZPosInCG = -1;
absSum = 0 ;
for( n = iCGSizeM1; n >= 0; --n )
{
if( piDstCoeff[ cctx.blockPos( n + subPos )] )
{
lastNZPosInCG = n;
break;
}
}
for( n = 0; n <= iCGSizeM1; n++ )
{
if( piDstCoeff[ cctx.blockPos( n + subPos )] )
{
firstNZPosInCG = n;
break;
}
}
for( n = firstNZPosInCG; n <= lastNZPosInCG; n++ )
{
absSum += int(piDstCoeff[ cctx.blockPos( n + subPos )]);
}
if(lastNZPosInCG>=0 && lastCG==-1)
{
lastCG = 1;
}
if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD )
{
uint32_t signbit = (piDstCoeff[cctx.blockPos(subPos+firstNZPosInCG)]>0?0:1);
if( signbit!=(absSum&0x1) ) // hide but need tune
{
// calculate the cost
int64_t minCostInc = std::numeric_limits<int64_t>::max(), curCost = std::numeric_limits<int64_t>::max();
int minPos = -1, finalChange = 0, curChange = 0;
for( n = (lastCG == 1 ? lastNZPosInCG : iCGSizeM1); n >= 0; --n )
{
uint32_t uiBlkPos = cctx.blockPos( n + subPos );
if(piDstCoeff[ uiBlkPos ] != 0 )
{
int64_t costUp = rdFactor * ( - deltaU[uiBlkPos] ) + rateIncUp[uiBlkPos];
int64_t costDown = rdFactor * ( deltaU[uiBlkPos] ) + rateIncDown[uiBlkPos]
- ((abs(piDstCoeff[uiBlkPos]) == 1) ? sigRateDelta[uiBlkPos] : 0);
if(lastCG==1 && lastNZPosInCG==n && abs(piDstCoeff[uiBlkPos])==1)
{
costDown -= (4<<SCALE_BITS);
}
if(costUp<costDown)
{
curCost = costUp;
curChange = 1;
}
else
{
curChange = -1;
if(n==firstNZPosInCG && abs(piDstCoeff[uiBlkPos])==1)
{
curCost = std::numeric_limits<int64_t>::max();
}
else
{
curCost = costDown;
}
}
}
else
{
curCost = rdFactor * ( - (abs(deltaU[uiBlkPos])) ) + (1<<SCALE_BITS) + rateIncUp[uiBlkPos] + sigRateDelta[uiBlkPos] ;
curChange = 1 ;
if(n<firstNZPosInCG)
{
uint32_t thissignbit = (plSrcCoeff[uiBlkPos]>=0?0:1);
if(thissignbit != signbit )
{
curCost = std::numeric_limits<int64_t>::max();
}
}
}
if( curCost<minCostInc)
{
minCostInc = curCost;
finalChange = curChange;
minPos = uiBlkPos;
}
}
if(piDstCoeff[minPos] == entropyCodingMaximum || piDstCoeff[minPos] == entropyCodingMinimum)
{
finalChange = -1;
}
if(plSrcCoeff[minPos]>=0)
{
piDstCoeff[minPos] += finalChange ;
}
else
{
piDstCoeff[minPos] -= finalChange ;
}
}
}
if(lastCG==1)
{
lastCG=0 ;
}
}
}
}
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
void QuantRDOQ::xRateDistOptQuantTS( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &coeffs, TCoeff &absSum, const QpParam &qp, const Ctx &ctx )
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth( chType );
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
int transformShift = getTransformShift( channelBitDepth, rect.size(), maxLog2TrDynamicRange );
if( extendedPrecision )
{
transformShift = std::max<int>( 0, transformShift );
}
double blockUncodedCost = 0;
const uint32_t maxNumCoeff = rect.area();
CHECK( compID >= MAX_NUM_TBLOCKS, "Invalid component ID" );
int scalingListType = getScalingListType( tu.cu->predMode, compID );
CHECK( scalingListType >= SCALING_LIST_NUM, "Invalid scaling list" );
const TCoeff *srcCoeff = coeffs.buf;
TCoeff *dstCoeff = tu.getCoeffs( compID ).buf;
double *costCoeff = m_pdCostCoeff;
double *costSig = m_pdCostSig;
double *costCoeff0 = m_pdCostCoeff0;
memset( m_pdCostCoeff, 0, sizeof( double ) * maxNumCoeff );
memset( m_pdCostSig, 0, sizeof( double ) * maxNumCoeff );
m_bdpcm = 0;
const bool needsSqrt2Scale = TU::needsSqrt2Scale( tu, compID ); // should always be false - transform-skipped blocks don't require sqrt(2) compensation.
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
const int qBits = QUANT_SHIFT + qp.per(isTransformSkip) + transformShift + ( needsSqrt2Scale ? -1 : 0 ); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale?1:0][qp.rem(isTransformSkip)];
const double errorScale = xGetErrScaleCoeff( TU::needsSqrt2Scale( tu, compID ), width, height, qp.rem(isTransformSkip), maxLog2TrDynamicRange, channelBitDepth );
const TCoeff entropyCodingMaximum = ( 1 << maxLog2TrDynamicRange ) - 1;
uint32_t coeffLevels[3];
double coeffLevelError[4];
CoeffCodingContext cctx( tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag() );
const int sbSizeM1 = ( 1 << cctx.log2CGSize() ) - 1;
double baseCost = 0;
uint32_t goRiceParam = 0;
double *costSigSubBlock = m_pdCostCoeffGroupSig;
memset( costSigSubBlock, 0, ( maxNumCoeff >> cctx.log2CGSize() ) * sizeof( double ) );
const int sbNum = width * height >> cctx.log2CGSize();
int scanPos;
coeffGroupRDStats rdStats;
bool anySigCG = false;
for( int sbId = 0; sbId < sbNum; sbId++ )
{
cctx.initSubblock( sbId );
memset( &rdStats, 0, sizeof (coeffGroupRDStats));
for( int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++ )
{
scanPos = cctx.minSubPos() + scanPosInSB;
//===== quantization =====
uint32_t blkPos = cctx.blockPos( scanPos );
// set coeff
const int64_t tmpLevel = int64_t( abs( srcCoeff[blkPos] ) ) * quantisationCoefficient;
const Intermediate_Int levelDouble = (Intermediate_Int)std::min<int64_t>( tmpLevel, std::numeric_limits<Intermediate_Int>::max() - ( Intermediate_Int( 1 ) << ( qBits - 1 ) ) );
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
uint32_t roundAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
uint32_t minAbsLevel = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
uint32_t downAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t(levelDouble >> qBits));
uint32_t upAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), downAbsLevel + 1);
m_testedLevels = 0;
coeffLevels[m_testedLevels++] = roundAbsLevel;
if (minAbsLevel != roundAbsLevel)
coeffLevels[m_testedLevels++] = minAbsLevel;
int rightPixel, belowPixel, predPixel;
cctx.neighTS(rightPixel, belowPixel, scanPos, dstCoeff);
predPixel = cctx.deriveModCoeff(rightPixel, belowPixel, upAbsLevel, 0);
if (upAbsLevel != roundAbsLevel && upAbsLevel != minAbsLevel && predPixel == 1)
coeffLevels[m_testedLevels++] = upAbsLevel;
double dErr = double(levelDouble);
coeffLevelError[0] = dErr * dErr * errorScale;
costCoeff0[scanPos] = coeffLevelError[0];
blockUncodedCost += costCoeff0[ scanPos ];
dstCoeff[blkPos] = coeffLevels[0];
//===== coefficient level estimation =====
unsigned ctxIdSig = cctx.sigCtxIdAbsTS( scanPos, dstCoeff );
uint32_t cLevel;
const BinFracBits fracBitsPar = fracBits.getFracBitsArray( cctx.parityCtxIdAbsTS() );
goRiceParam = cctx.templateAbsSumTS( scanPos, dstCoeff );
unsigned ctxIdSign = cctx.signCtxIdAbsTS(scanPos, dstCoeff, 0);
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(ctxIdSign);
const uint8_t sign = srcCoeff[ blkPos ] < 0 ? 1 : 0;
DTRACE_COND( ( coeffLevels[0] != 0 ), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig );
unsigned gt1CtxId = cctx.lrg1CtxIdAbsTS(scanPos, dstCoeff, 0);
const BinFracBits fracBitsGr1 = fracBits.getFracBitsArray(gt1CtxId);
const BinFracBits fracBitsSig = fracBits.getFracBitsArray( ctxIdSig );
bool lastCoeff = false; //
if (scanPosInSB == lastPosCoded && noCoeffCoded == 0)
{
lastCoeff = true;
}
cLevel = xGetCodedLevelTSPred( costCoeff[ scanPos ], costCoeff0[ scanPos ], costSig[ scanPos ], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
TCoeff level = cLevel;
dstCoeff[blkPos] = (level != 0 && srcCoeff[blkPos] < 0) ? -level : level;
baseCost += costCoeff[ scanPos ];
rdStats.d64SigCost += costSig[ scanPos ];
if( dstCoeff[ blkPos ] )
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += costCoeff [ scanPos ] - costSig[ scanPos ];
rdStats.d64UncodedDist += costCoeff0[ scanPos ];
}
} //end for (iScanPosinCG)
if( !cctx.isSigGroup() )
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId( true ) );
baseCost += xGetRateSigCoeffGroup( fracBitsSigGroup, 0 ) - rdStats.d64SigCost;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
}
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double costZeroSB = baseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId( true ) );
baseCost += xGetRateSigCoeffGroup( fracBitsSigGroup, 1 );
costZeroSB += xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
costSigSubBlock[ cctx.subSetId() ] = xGetRateSigCoeffGroup( fracBitsSigGroup, 1 );
costZeroSB += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
costZeroSB -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
costZeroSB -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
if( costZeroSB < baseCost )
{
cctx.resetSigGroup();
baseCost = costZeroSB;
costSigSubBlock[ cctx.subSetId() ] = xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
for( int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++ )
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
{
scanPos = cctx.minSubPos() + scanPosInSB;
uint32_t blkPos = cctx.blockPos( scanPos );
if( dstCoeff[ blkPos ] )
{
dstCoeff[ blkPos ] = 0;
costCoeff[ scanPos ] = costCoeff0[ scanPos ];
costSig[ scanPos] = 0;
}
}
}
else
{
anySigCG = true;
}
}
}
//===== estimate last position =====
for( int scanPos = 0; scanPos < maxNumCoeff; scanPos++ )
{
int blkPos = cctx.blockPos( scanPos );
TCoeff level = dstCoeff[ blkPos ];
absSum += abs(level);
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
void QuantRDOQ::forwardRDPCM( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &coeffs, TCoeff &absSum, const QpParam &qp, const Ctx &ctx )
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth(chType);
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
const int dirMode = tu.cu->bdpcmMode;
int transformShift = getTransformShift(channelBitDepth, rect.size(), maxLog2TrDynamicRange);
if (extendedPrecision)
{
transformShift = std::max<int>(0, transformShift);
}
double blockUncodedCost = 0;
const uint32_t maxNumCoeff = rect.area();
CHECK(compID >= MAX_NUM_TBLOCKS, "Invalid component ID");
int scalingListType = getScalingListType(tu.cu->predMode, compID);
CHECK(scalingListType >= SCALING_LIST_NUM, "Invalid scaling list");
const TCoeff *srcCoeff = coeffs.buf;
TCoeff *dstCoeff = tu.getCoeffs(compID).buf;
double *costCoeff = m_pdCostCoeff;
double *costSig = m_pdCostSig;
double *costCoeff0 = m_pdCostCoeff0;
memset(m_pdCostCoeff, 0, sizeof(double) * maxNumCoeff);
memset(m_pdCostSig, 0, sizeof(double) * maxNumCoeff);
memset(m_fullCoeff, 0, sizeof(TCoeff) * maxNumCoeff);
m_bdpcm = dirMode;
const bool needsSqrt2Scale = TU::needsSqrt2Scale(tu, compID); // should always be false - transform-skipped blocks don't require sqrt(2) compensation.
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
const int qBits = QUANT_SHIFT + qp.per(isTransformSkip) + transformShift + ( needsSqrt2Scale ? -1 : 0 ); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale ? 1 : 0][qp.rem(isTransformSkip)];
const double errorScale = xGetErrScaleCoeff(TU::needsSqrt2Scale(tu, compID), width, height, qp.rem(isTransformSkip), maxLog2TrDynamicRange, channelBitDepth);
trQuantParams.rightShift = (IQUANT_SHIFT - (transformShift + qp.per(isTransformSkip)));
trQuantParams.qScale = g_invQuantScales[needsSqrt2Scale ? 1 : 0][qp.rem(isTransformSkip)];
const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1;
uint32_t coeffLevels[3];
double coeffLevelError[4];
CoeffCodingContext cctx(tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag());
const int sbSizeM1 = (1 << cctx.log2CGSize()) - 1;
double baseCost = 0;
uint32_t goRiceParam = 0;
double *costSigSubBlock = m_pdCostCoeffGroupSig;
memset(costSigSubBlock, 0, (maxNumCoeff >> cctx.log2CGSize()) * sizeof(double));
const int sbNum = width * height >> cctx.log2CGSize();
int scanPos;
coeffGroupRDStats rdStats;
bool anySigCG = false;
for (int sbId = 0; sbId < sbNum; sbId++)
{
cctx.initSubblock(sbId);
memset(&rdStats, 0, sizeof(coeffGroupRDStats));
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
{
scanPos = cctx.minSubPos() + scanPosInSB;
//===== quantization =====
uint32_t blkPos = cctx.blockPos(scanPos);
const int posX = cctx.posX(scanPos);
const int posY = cctx.posY(scanPos);
const int posS = (1 == dirMode) ? posX : posY;
const int posNb = (1 == dirMode) ? (posX - 1) + posY * coeffs.stride : posX + (posY - 1) * coeffs.stride;
TCoeff predCoeff = (0 != posS) ? m_fullCoeff[posNb] : 0;
// set coeff
const int64_t tmpLevel = int64_t(abs(srcCoeff[blkPos] - predCoeff)) * quantisationCoefficient;
const Intermediate_Int levelDouble = (Intermediate_Int)std::min<int64_t>(tmpLevel, std::numeric_limits<Intermediate_Int>::max() - (Intermediate_Int(1) << (qBits - 1)));
uint32_t roundAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
uint32_t minAbsLevel = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
m_testedLevels = 0;
coeffLevels[m_testedLevels++] = roundAbsLevel;
if (minAbsLevel != roundAbsLevel)
coeffLevels[m_testedLevels++] = minAbsLevel;
double dErr = double(levelDouble);
coeffLevelError[0] = dErr * dErr * errorScale;
costCoeff0[scanPos] = coeffLevelError[0];
blockUncodedCost += costCoeff0[scanPos];
dstCoeff[blkPos] = coeffLevels[0];
//===== coefficient level estimation =====
unsigned ctxIdSig = cctx.sigCtxIdAbsTS(scanPos, dstCoeff);
uint32_t cLevel;
const BinFracBits fracBitsPar = fracBits.getFracBitsArray(cctx.parityCtxIdAbsTS());
goRiceParam = cctx.templateAbsSumTS(scanPos, dstCoeff);
unsigned ctxIdSign = cctx.signCtxIdAbsTS(scanPos, dstCoeff, dirMode);
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(ctxIdSign);
const uint8_t sign = srcCoeff[blkPos] - predCoeff < 0 ? 1 : 0;
unsigned gt1CtxId = cctx.lrg1CtxIdAbsTS(scanPos, dstCoeff, dirMode);
const BinFracBits fracBitsGr1 = fracBits.getFracBitsArray(gt1CtxId);
DTRACE_COND((dstCoeff[blkPos] != 0), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig);
const BinFracBits fracBitsSig = fracBits.getFracBitsArray(ctxIdSig);
bool lastCoeff = false; //
if (scanPosInSB == lastPosCoded && noCoeffCoded == 0)
{
lastCoeff = true;
}
int rightPixel, belowPixel;
cctx.neighTS(rightPixel, belowPixel, scanPos, dstCoeff);
cLevel = xGetCodedLevelTSPred(costCoeff[scanPos], costCoeff0[scanPos], costSig[scanPos], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
dstCoeff[blkPos] = cLevel;
if (sign)
{
dstCoeff[blkPos] = -dstCoeff[blkPos];
}
xDequantSample( m_fullCoeff[blkPos], dstCoeff[blkPos], trQuantParams );
m_fullCoeff[blkPos] += predCoeff;
baseCost += costCoeff[scanPos];
rdStats.d64SigCost += costSig[scanPos];
if (dstCoeff[blkPos])
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += costCoeff[scanPos] - costSig[scanPos];
rdStats.d64UncodedDist += costCoeff0[scanPos];
}
} //end for (iScanPosinCG)
if (!cctx.isSigGroup())
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray(cctx.sigGroupCtxId(true));
baseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 0) - rdStats.d64SigCost;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
}
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double costZeroSB = baseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray(cctx.sigGroupCtxId(true));
baseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 1);
costZeroSB += xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 1);
costZeroSB += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
costZeroSB -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
costZeroSB -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
if (costZeroSB < baseCost)
{
cctx.resetSigGroup();
baseCost = costZeroSB;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
{
scanPos = cctx.minSubPos() + scanPosInSB;
uint32_t blkPos = cctx.blockPos(scanPos);
const int posX = cctx.posX(scanPos);
const int posY = cctx.posY(scanPos);
const int posS = (1 == dirMode) ? posX : posY;
const int posNb = (1 == dirMode) ? (posX - 1) + posY * coeffs.stride : posX + (posY - 1) * coeffs.stride;
m_fullCoeff[scanPos] = (0 != posS) ? m_fullCoeff[posNb] : 0;
if (dstCoeff[blkPos])
{
dstCoeff[blkPos] = 0;
costCoeff[scanPos] = costCoeff0[scanPos];
costSig[scanPos] = 0;
}
}
}
else
{
anySigCG = true;
}
}
}
//===== estimate last position =====
for (int scanPos = 0; scanPos < maxNumCoeff; scanPos++)
{
int blkPos = cctx.blockPos(scanPos);
TCoeff level = dstCoeff[blkPos];
absSum += abs(level);
}
}
void QuantRDOQ::xDequantSample(TCoeff& pRes, TCoeff& coeff, const TrQuantParams& trQuantParams)
{
// xDequant
if (trQuantParams.rightShift > 0)
{
const Intermediate_Int qAdd = Intermediate_Int(1) << (trQuantParams.rightShift - 1);
pRes = TCoeff((Intermediate_Int(coeff) * trQuantParams.qScale + qAdd) >> trQuantParams.rightShift);
}
else
{
pRes = TCoeff((Intermediate_Int(coeff) * trQuantParams.qScale) << -trQuantParams.rightShift);
}
}
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
inline uint32_t QuantRDOQ::xGetCodedLevelTSPred(double& rd64CodedCost,
double& rd64CodedCost0,
double& rd64CodedCostSig,
Intermediate_Int levelDouble,
int qBits,
double errorScale,
uint32_t coeffLevels[],
double coeffLevelError[],
const BinFracBits* fracBitsSig,
const BinFracBits& fracBitsPar,
CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
const BinFracBits& fracBitsGt1,
const uint8_t sign,
int rightPixel,
int belowPixel,
uint16_t ricePar,
bool isLast,
bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange
) const
{
double currCostSig = 0;
uint32_t bestAbsLevel = 0;
if (!isLast && coeffLevels[0] < 3)
{
rd64CodedCostSig = xGetRateSigCoef(*fracBitsSig, 0);
rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig;
if (coeffLevels[0] == 0)
{
return bestAbsLevel;
}
}
else
{
rd64CodedCost = MAX_DOUBLE;
}
if (!isLast)
{
currCostSig = xGetRateSigCoef(*fracBitsSig, 1);
}
for (int errorInd = 1; errorInd <= m_testedLevels; errorInd++)
{
int absLevel = coeffLevels[errorInd - 1];
double dErr = 0.0;
dErr = double(levelDouble - (Intermediate_Int(absLevel) << qBits));
coeffLevelError[errorInd] = dErr * dErr * errorScale;
int modAbsLevel = cctx.deriveModCoeff(rightPixel, belowPixel, absLevel, m_bdpcm);
double dCurrCost = coeffLevelError[errorInd] + xGetICost(xGetICRateTS(modAbsLevel, fracBitsPar, cctx, fracBitsAccess, fracBitsSign, fracBitsGt1, sign, ricePar, useLimitedPrefixLength, maxLog2TrDynamicRange));
dCurrCost += currCostSig;
if (dCurrCost < rd64CodedCost)
{
bestAbsLevel = absLevel;
rd64CodedCost = dCurrCost;
rd64CodedCostSig = currCostSig;
}
}
return bestAbsLevel;
}
inline int QuantRDOQ::xGetICRateTS( const uint32_t absLevel,
const BinFracBits& fracBitsPar,
const CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
const BinFracBits& fracBitsGt1,
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
const uint8_t sign,
const uint16_t ricePar,
const bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange ) const
{
int rate = fracBitsSign.intBits[sign];
if( absLevel > 1 )
{
rate += fracBitsGt1.intBits[1];
rate += fracBitsPar.intBits[( absLevel - 2 ) & 1];
int cutoffVal = 2;
const int numGtBins = 4;
for( int i = 0; i < numGtBins; i++ )
{
if( absLevel >= cutoffVal )
{
const uint16_t ctxGtX = cctx.greaterXCtxIdAbsTS( cutoffVal>>1 );
const BinFracBits &fracBitsGtX = fracBitsAccess.getFracBitsArray( ctxGtX );
unsigned gtX = ( absLevel >= ( cutoffVal + 2 ) );
rate += fracBitsGtX.intBits[gtX];
}
cutoffVal += 2;
}
if( absLevel >= cutoffVal )
{
uint32_t symbol = ( absLevel - cutoffVal ) >> 1;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if( symbol < ( threshold << ricePar ) )
{
length = symbol >> ricePar;
rate += ( length + 1 + ricePar ) << SCALE_BITS;
}
else if( useLimitedPrefixLength )
{
const uint32_t maximumPrefixLength = ( 32 - ( COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange ) );
uint32_t prefixLength = 0;
uint32_t suffix = ( symbol >> ricePar ) - COEF_REMAIN_BIN_REDUCTION;
while( ( prefixLength < maximumPrefixLength ) && ( suffix > ( ( 2 << prefixLength ) - 2 ) ) )
{
prefixLength++;
}
const uint32_t suffixLength = ( prefixLength == maximumPrefixLength ) ? ( maxLog2TrDynamicRange - ricePar ) : ( prefixLength + 1/*separator*/ );
rate += ( COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ricePar ) << SCALE_BITS;
}
else
{
length = ricePar;
symbol = symbol - ( threshold << ricePar );
while( symbol >= ( 1 << length ) )
{
symbol -= ( 1 << ( length++ ) );
}
rate += ( threshold + length + 1 - ricePar + length ) << SCALE_BITS;
}
}
}
else if( absLevel == 1 )
{
rate += fracBitsGt1.intBits[0];
}
else
{
rate = 0;
}
return rate;
}