Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "InterPrediction.h"
#include "Buffer.h"
#include "UnitTools.h"

Karsten Suehring
committed
#include <memory.h>
#include <algorithm>
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
InterPrediction::InterPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
, m_maxCompIDToPred ( MAX_NUM_COMPONENT )
, m_pcRdCost ( nullptr )
, m_gradX0(nullptr)
, m_gradY0(nullptr)
, m_gradX1(nullptr)
, m_gradY1(nullptr)

Karsten Suehring
committed
{
for( uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++ )
{
for( uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ )
{
m_acYuvPred[refList][ch] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )

Karsten Suehring
committed
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )

Karsten Suehring
committed
{
m_filteredBlock[i][j][c] = nullptr;
}
m_filteredBlockTmp[i][c] = nullptr;
}
}
m_cYuvPredTempDMVRL1 = nullptr;
m_cYuvPredTempDMVRL0 = nullptr;
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
m_cRefSamplesDMVRL0[ch] = nullptr;
m_cRefSamplesDMVRL1[ch] = nullptr;
}

Karsten Suehring
committed
}
InterPrediction::~InterPrediction()
{
destroy();
}
void InterPrediction::destroy()
{
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
xFree( m_acYuvPred[i][c] );
m_acYuvPred[i][c] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )

Karsten Suehring
committed
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )

Karsten Suehring
committed
{
xFree( m_filteredBlock[i][j][c] );
m_filteredBlock[i][j][c] = nullptr;
}
xFree( m_filteredBlockTmp[i][c] );
m_filteredBlockTmp[i][c] = nullptr;
}
}
if (m_storedMv != nullptr)
{
delete[]m_storedMv;
xFree(m_gradX0); m_gradX0 = nullptr;
xFree(m_gradY0); m_gradY0 = nullptr;
xFree(m_gradX1); m_gradX1 = nullptr;
xFree(m_gradY1); m_gradY1 = nullptr;
xFree(m_cYuvPredTempDMVRL0);
m_cYuvPredTempDMVRL0 = nullptr;
xFree(m_cYuvPredTempDMVRL1);
m_cYuvPredTempDMVRL1 = nullptr;
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
xFree(m_cRefSamplesDMVRL0[ch]);
m_cRefSamplesDMVRL0[ch] = nullptr;
xFree(m_cRefSamplesDMVRL1[ch]);
m_cRefSamplesDMVRL1[ch] = nullptr;
}

Karsten Suehring
committed
}
void InterPrediction::init( RdCost* pcRdCost, ChromaFormat chromaFormatIDC )
{
m_pcRdCost = pcRdCost;
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] != nullptr && m_currChromaFormat != chromaFormatIDC )
{
destroy();
}
m_currChromaFormat = chromaFormatIDC;
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] == nullptr ) // check if first is null (in which case, nothing initialised yet)
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
int extWidth = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 16;
int extHeight = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 1;
extWidth = extWidth > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16) ? extWidth : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16;
extHeight = extHeight > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1) ? extHeight : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1;
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )

Karsten Suehring
committed
{
m_filteredBlockTmp[i][c] = ( Pel* ) xMalloc( Pel, ( extWidth + 4 ) * ( extHeight + 7 + 4 ) );
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )

Karsten Suehring
committed
{
m_filteredBlock[i][j][c] = ( Pel* ) xMalloc( Pel, extWidth * extHeight );
}
}
// new structure
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
m_acYuvPred[i][c] = ( Pel* ) xMalloc( Pel, MAX_CU_SIZE * MAX_CU_SIZE );
}
}
m_triangleBuf.create(UnitArea(chromaFormatIDC, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));

Karsten Suehring
committed
m_iRefListIdx = -1;
m_gradX0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradX1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);

Karsten Suehring
committed
}
if (m_cYuvPredTempDMVRL0 == nullptr && m_cYuvPredTempDMVRL1 == nullptr)
m_cYuvPredTempDMVRL0 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)));
m_cYuvPredTempDMVRL1 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)));
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
m_cRefSamplesDMVRL0[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA));
m_cRefSamplesDMVRL1[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA));
}

Karsten Suehring
committed
#if !JVET_J0090_MEMORY_BANDWITH_MEASURE
m_if.initInterpolationFilter( true );
#endif
if (m_storedMv == nullptr)
{
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;
m_storedMv = new Mv[MVBUFFER_SIZE*MVBUFFER_SIZE];
}

Karsten Suehring
committed
}
bool checkIdenticalMotion( const PredictionUnit &pu, bool checkAffine )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
CHECK( !checkAffine, "In this case, checkAffine should be on." );
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) )

Karsten Suehring
committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
return true;
}
}
}
}
}
return false;
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
bool InterPrediction::xCheckIdenticalMotion( const PredictionUnit &pu )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) )

Karsten Suehring
committed
{
return true;
}
}
}
}
}
return false;
}
void InterPrediction::xSubPuMC( PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ )
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
int numPartLine, numPartCol, puHeight, puWidth;
{
numPartLine = std::max(puSize.width >> ATMVP_SUB_BLOCK_SIZE, 1u);
numPartCol = std::max(puSize.height >> ATMVP_SUB_BLOCK_SIZE, 1u);
puHeight = numPartCol == 1 ? puSize.height : 1 << ATMVP_SUB_BLOCK_SIZE;
puWidth = numPartLine == 1 ? puSize.width : 1 << ATMVP_SUB_BLOCK_SIZE;

Karsten Suehring
committed
}
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = MRG_TYPE_DEFAULT_N;
bool isAffine = pu.cu->affine;
subPu.cu->affine = false;

Karsten Suehring
committed
// join sub-pus containing the same motion
bool verMC = puSize.height > puSize.width;
int fstStart = (!verMC ? puPos.y : puPos.x);
int secStart = (!verMC ? puPos.x : puPos.y);
int fstEnd = (!verMC ? puPos.y + puSize.height : puPos.x + puSize.width);
int secEnd = (!verMC ? puPos.x + puSize.width : puPos.y + puSize.height);
int fstStep = (!verMC ? puHeight : puWidth);
int secStep = (!verMC ? puWidth : puHeight);

Karsten Suehring
committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = !verMC ? secDim : fstDim;
int y = !verMC ? fstDim : secDim;
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
int length = secStep;
int later = secDim + secStep;
while (later < secEnd)
{
const MotionInfo &laterMi = !verMC ? pu.getMotionInfo(Position{ later, fstDim }) : pu.getMotionInfo(Position{ fstDim, later });
if (laterMi == curMi)
{
length += secStep;
}
else
{
break;
}
later += secStep;
}
int dx = !verMC ? length : puWidth;
int dy = !verMC ? puHeight : length;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
LI JINGYA
committed
subPu.mmvdEncOptMode = 0;
subPu.mvRefine = false;

Karsten Suehring
committed
motionCompensation(subPu, subPredBuf, eRefPicList);
secDim = later - secStep;
}
}
pu.cu->affine = isAffine;

Karsten Suehring
committed
}
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#if JVET_N0178_IMPLICIT_BDOF_SPLIT
void InterPrediction::xSubPuBio(PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/)
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = pu.mergeType;
subPu.mmvdMergeFlag = pu.mmvdMergeFlag;
subPu.mmvdEncOptMode = pu.mmvdEncOptMode;
subPu.mergeFlag = pu.mergeFlag;
subPu.mvRefine = pu.mvRefine;
subPu.refIdx[0] = pu.refIdx[0];
subPu.refIdx[1] = pu.refIdx[1];
int fstStart = puPos.y;
int secStart = puPos.x;
int fstEnd = puPos.y + puSize.height;
int secEnd = puPos.x + puSize.width;
int fstStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.height);
int secStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.width);
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = secDim;
int y = fstDim;
int dx = secStep;
int dy = fstStep;

Karsten Suehring
committed
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
motionCompensation(subPu, subPredBuf, eRefPicList);
}
}
}
#endif
void InterPrediction::xChromaMC(PredictionUnit &pu, PelUnitBuf& pcYuvPred)
{
// separated tree, chroma
const CompArea lumaArea = CompArea(COMPONENT_Y, pu.chromaFormat, pu.Cb().lumaPos(), recalcSize(pu.chromaFormat, CHANNEL_TYPE_CHROMA, CHANNEL_TYPE_LUMA, pu.Cb().size()));
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
Picture * refPic = pu.cu->slice->getPic();
for (int y = lumaArea.y; y < lumaArea.y + lumaArea.height; y += MIN_PU_SIZE)
{
for (int x = lumaArea.x; x < lumaArea.x + lumaArea.width; x += MIN_PU_SIZE)
{
const MotionInfo &curMi = pu.cs->picture->cs->getMotionInfo(Position{ x, y });
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, MIN_PU_SIZE, MIN_PU_SIZE)));
PelUnitBuf subPredBuf = pcYuvPred.subBuf(UnitAreaRelative(pu, subPu));
xPredInterBlk(COMPONENT_Cb, subPu, refPic, curMi.mv[0], subPredBuf, false, pu.cu->slice->clpRng(COMPONENT_Cb)
, false
, true);
xPredInterBlk(COMPONENT_Cr, subPu, refPic, curMi.mv[0], subPredBuf, false, pu.cu->slice->clpRng(COMPONENT_Cr)
, false
, true);
void InterPrediction::xPredInterUni(const PredictionUnit& pu, const RefPicList& eRefPicList, PelUnitBuf& pcYuvPred, const bool& bi
, const bool& bioApplied
, const bool luma, const bool chroma

Karsten Suehring
committed
{
const SPS &sps = *pu.cs->sps;
int iRefIdx = pu.refIdx[eRefPicList];
Mv mv[3];

Karsten Suehring
committed
if( pu.cu->affine )
{
CHECK( iRefIdx < 0, "iRefIdx incorrect." );
mv[0] = pu.mvAffi[eRefPicList][0];
mv[1] = pu.mvAffi[eRefPicList][1];
mv[2] = pu.mvAffi[eRefPicList][2];

Karsten Suehring
committed
}
else
{
mv[0] = pu.mv[eRefPicList];
}
if ( !pu.cu->affine )
clipMv(mv[0], pu.cu->lumaPos(),
pu.cu->lumaSize(),
sps);

Karsten Suehring
committed
for( uint32_t comp = COMPONENT_Y; comp < pcYuvPred.bufs.size() && comp <= m_maxCompIDToPred; comp++ )
{
const ComponentID compID = ComponentID( comp );
if (compID == COMPONENT_Y && !luma)
continue;
if (compID != COMPONENT_Y && !chroma)
continue;

Karsten Suehring
committed
if ( pu.cu->affine )
{
CHECK( bioApplied, "BIO is not allowed with affine" );

Karsten Suehring
committed
xPredAffineBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx ), mv, pcYuvPred, bi, pu.cu->slice->clpRng( compID ) );
}
else
{
if (isIBC)
{
xPredInterBlk(compID, pu, pu.cu->slice->getPic(), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng(compID)
, bioApplied
, isIBC
);
}
else
{
xPredInterBlk(compID, pu, pu.cu->slice->getRefPic(eRefPicList, iRefIdx), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng(compID)
, bioApplied
, isIBC
);
}

Karsten Suehring
committed
}
}
}
void InterPrediction::xPredInterBi(PredictionUnit& pu, PelUnitBuf &pcYuvPred)
{
const PPS &pps = *pu.cs->pps;
const Slice &slice = *pu.cs->slice;
bool bioApplied = false;
if (pu.cs->sps->getBDOFEnabledFlag())
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
const bool biocheck0 = !(pps.getWPBiPred() && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
&& PU::isBiPredFromDifferentDir(pu)
&& !(pu.Y().height == 4 || (pu.Y().width == 4 && pu.Y().height == 8))
)
{
bioApplied = true;
if (bioApplied && pu.cu->smvdMode)
{
bioApplied = false;
}
if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
bioApplied = false;
LI JINGYA
committed
if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag) {
bioApplied = false;
}
bool dmvrApplied = false;
dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu);

Karsten Suehring
committed
for (uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
if( pu.refIdx[refList] < 0)
{
continue;
}
RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
CHECK(CU::isIBC(*pu.cu) && eRefPicList != REF_PIC_LIST_0, "Invalid interdir for ibc mode");
CHECK(CU::isIBC(*pu.cu) && pu.refIdx[refList] != MAX_NUM_REF, "Invalid reference index for ibc mode");
CHECK((CU::isInter(*pu.cu) && pu.refIdx[refList] >= slice.getNumRefIdx(eRefPicList)), "Invalid reference index");

Karsten Suehring
committed
m_iRefListIdx = refList;
PelUnitBuf pcMbBuf = ( pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[refList][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[refList][2], pcYuvPred.Cr())) );
if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0)
{
continue; // mc will happen in processDMVR

Karsten Suehring
committed
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
, true, true
);

Karsten Suehring
committed
}
else
{
if( ( (pps.getUseWP() && slice.getSliceType() == P_SLICE) || (pps.getWPBiPred() && slice.getSliceType() == B_SLICE) ) )
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
, true, true
);

Karsten Suehring
committed
}
else
{
xPredInterUni( pu, eRefPicList, pcMbBuf, pu.cu->triangle
, bioApplied
, true, true
);

Karsten Suehring
committed
}
}
}
{
xProcessDMVR(pu, pcYuvPred, slice.clpRngs(), bioApplied);
}

Karsten Suehring
committed
CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) );
CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) );
if( pps.getWPBiPred() && slice.getSliceType() == B_SLICE )
{
xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred );
}
else if( pps.getUseWP() && slice.getSliceType() == P_SLICE )
{
xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred );
}
else
{
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied );

Karsten Suehring
committed
}
}
void InterPrediction::xPredInterBlk ( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv& _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng
, const bool& bioApplied
, SizeType dmvrWidth
, SizeType dmvrHeight
, bool bilinearMC
, Pel *srcPadBuf
, int32_t srcPadStride

Karsten Suehring
committed
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
const bool rndRes = !bi;
int shiftHor = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleX(compID, chFmt);
int shiftVer = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleY(compID, chFmt);

Karsten Suehring
committed
int xFrac = _mv.hor & ((1 << shiftHor) - 1);
int yFrac = _mv.ver & ((1 << shiftVer) - 1);
JVET_J0090_SET_CACHE_ENABLE( false );

Karsten Suehring
committed
PelBuf &dstBuf = dstPic.bufs[compID];
unsigned width = dstBuf.width;
unsigned height = dstBuf.height;
CPelBuf refBuf;
{
Position offset = pu.blocks[compID].pos().offset( _mv.getHor() >> shiftHor, _mv.getVer() >> shiftVer );
if (dmvrWidth)
{
refBuf = refPic->getRecoBuf(CompArea(compID, chFmt, offset, Size(dmvrWidth, dmvrHeight)));
}
else

Karsten Suehring
committed
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, pu.blocks[compID].size() ) );
}
if (NULL != srcPadBuf)
{
refBuf.buf = srcPadBuf;
refBuf.stride = srcPadStride;
}
if (dmvrWidth)
{
width = dmvrWidth;
height = dmvrHeight;
}
// backup data
int backupWidth = width;
int backupHeight = height;
Pel *backupDstBufPtr = dstBuf.buf;
int backupDstBufStride = dstBuf.stride;
if (bioApplied && compID == COMPONENT_Y)
width = width + 2 * BIO_EXTEND_SIZE + 2;
height = height + 2 * BIO_EXTEND_SIZE + 2;
// change MC output
dstBuf.stride = width;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 2;
}

Karsten Suehring
committed
if( yFrac == 0 )
{
m_if.filterHor(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, xFrac, rndRes, chFmt, clpRng, bilinearMC, bilinearMC);

Karsten Suehring
committed
}
else if( xFrac == 0 )
{
m_if.filterVer(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, true, rndRes, chFmt, clpRng, bilinearMC, bilinearMC);

Karsten Suehring
committed
}
else
{
PelBuf tmpBuf = dmvrWidth ? PelBuf(m_filteredBlockTmp[0][compID], Size(dmvrWidth, dmvrHeight)) : PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
if (dmvrWidth == 0)
tmpBuf.stride = dstBuf.stride;

Karsten Suehring
committed
int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
if (bilinearMC)
{
vFilterSize = NTAPS_BILINEAR;
}
m_if.filterHor(compID, (Pel*)refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, backupWidth, backupHeight + vFilterSize - 1, xFrac, false, chFmt, clpRng, bilinearMC, bilinearMC);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer(compID, (Pel*)tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, false, rndRes, chFmt, clpRng, bilinearMC, bilinearMC);

Karsten Suehring
committed
}
JVET_J0090_SET_CACHE_ENABLE( true );
if (bioApplied && compID == COMPONENT_Y)
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
const Pel* refPel = refBuf.buf - refBuf.stride - 1;
Pel* dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + dstBuf.stride + 1;
for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++)
{
Pel val = leftShift_round(refPel[w], shift);
dstPel[w] = val - (Pel)IF_INTERNAL_OFFS;
}
refPel = refBuf.buf - 1;
dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 1;
for (int h = 0; h < (height - 2 * BIO_EXTEND_SIZE - 2); h++)
{
Pel val = leftShift_round(refPel[0], shift);
dstPel[0] = val - (Pel)IF_INTERNAL_OFFS;
val = leftShift_round(refPel[width - 3], shift);
dstPel[width - 3] = val - (Pel)IF_INTERNAL_OFFS;
refPel += refBuf.stride;
dstPel += dstBuf.stride;
}
refPel = refBuf.buf + (height - 2 * BIO_EXTEND_SIZE - 2)*refBuf.stride - 1;
dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + (height - 2 * BIO_EXTEND_SIZE)*dstBuf.stride + 1;
for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++)
{
Pel val = leftShift_round(refPel[w], shift);
dstPel[w] = val - (Pel)IF_INTERNAL_OFFS;
}
width = backupWidth;
height = backupHeight;
dstBuf.buf = backupDstBufPtr;
dstBuf.stride = backupDstBufStride;
}

Karsten Suehring
committed
}
void InterPrediction::xPredAffineBlk( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv* _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng )
{
if ( (pu.cu->affineType == AFFINEMODEL_6PARAM && _mv[0] == _mv[1] && _mv[0] == _mv[2])
|| (pu.cu->affineType == AFFINEMODEL_4PARAM && _mv[0] == _mv[1])
)
{
Mv mvTemp = _mv[0];
clipMv( mvTemp, pu.cu->lumaPos(),
pu.cu->lumaSize(),
*pu.cs->sps );
xPredInterBlk( compID, pu, refPic, mvTemp, dstPic, bi, clpRng
, false
, false
);

Karsten Suehring
committed
return;
}
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
int iScaleX = ::getComponentScaleX( compID, chFmt );
int iScaleY = ::getComponentScaleY( compID, chFmt );
Mv mvLT =_mv[0];
Mv mvRT =_mv[1];
Mv mvLB =_mv[2];
// get affine sub-block width and height
const int width = pu.Y().width;
const int height = pu.Y().height;
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
CHECK(blockWidth > (width >> iScaleX ), "Sub Block width > Block width");
CHECK(blockHeight > (height >> iScaleX), "Sub Block height > Block height");
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;

Karsten Suehring
committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
const int cxWidth = width >> iScaleX;
const int cxHeight = height >> iScaleY;
const int iHalfBW = blockWidth >> 1;
const int iHalfBH = blockHeight >> 1;
const int iBit = MAX_CU_DEPTH;
int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY;
iDMvHorX = (mvRT - mvLT).getHor() << (iBit - g_aucLog2[cxWidth]);
iDMvHorY = (mvRT - mvLT).getVer() << (iBit - g_aucLog2[cxWidth]);
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
iDMvVerX = (mvLB - mvLT).getHor() << (iBit - g_aucLog2[cxHeight]);
iDMvVerY = (mvLB - mvLT).getVer() << (iBit - g_aucLog2[cxHeight]);
}
else
{
iDMvVerX = -iDMvHorY;
iDMvVerY = iDMvHorX;
}
int iMvScaleHor = mvLT.getHor() << iBit;
int iMvScaleVer = mvLT.getVer() << iBit;
const SPS &sps = *pu.cs->sps;
const int iMvShift = 4;
const int iOffset = 8;
const int iHorMax = ( sps.getPicWidthInLumaSamples() + iOffset - pu.Y().x - 1 ) << iMvShift;
const int iHorMin = ( -(int)pu.cs->pcv->maxCUWidth - iOffset - (int)pu.Y().x + 1 ) << iMvShift;
const int iVerMax = ( sps.getPicHeightInLumaSamples() + iOffset - pu.Y().y - 1 ) << iMvShift;
const int iVerMin = ( -(int)pu.cs->pcv->maxCUHeight - iOffset - (int)pu.Y().y + 1 ) << iMvShift;
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
const int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
const int shift = iBit - 4 + MV_FRACTIONAL_BITS_INTERNAL;

Karsten Suehring
committed
// get prediction block by block
for ( int h = 0; h < cxHeight; h += blockHeight )
{
for ( int w = 0; w < cxWidth; w += blockWidth )
{
int iMvScaleTmpHor, iMvScaleTmpVer;
if(compID == COMPONENT_Y)
{
iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
roundAffineMv(iMvScaleTmpHor, iMvScaleTmpVer, shift);
Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer);
tmpMv.clipToStorageBitDepth();
iMvScaleTmpHor = tmpMv.getHor();
iMvScaleTmpVer = tmpMv.getVer();
if (sps.getWrapAroundEnabledFlag())
{
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer);
clipMv(tmpMv, Position(pu.Y().x + w, pu.Y().y + h), Size(blockWidth, blockHeight), sps);
iMvScaleTmpHor = tmpMv.getHor();
iMvScaleTmpVer = tmpMv.getVer();
}
else
{
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
iMvScaleTmpHor = std::min<int>(iHorMax, std::max<int>(iHorMin, iMvScaleTmpHor));
iMvScaleTmpVer = std::min<int>(iVerMax, std::max<int>(iVerMin, iMvScaleTmpVer));
}
Anish Tamse
committed
Mv curMv = m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE) * MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + 1)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + 1)];
roundAffineMv(curMv.hor, curMv.ver, 1);
if (sps.getWrapAroundEnabledFlag())
{
clipMv(curMv, Position(pu.Y().x + (w << iScaleX), pu.Y().y + (h << iScaleY)), Size(blockWidth << iScaleX, blockHeight << iScaleY), sps);
}
else
{
curMv.hor = std::min<int>(iHorMax, std::max<int>(iHorMin, curMv.hor));
curMv.ver = std::min<int>(iVerMax, std::max<int>(iVerMin, curMv.ver));
}
iMvScaleTmpHor = curMv.hor;
iMvScaleTmpVer = curMv.ver;
}

Karsten Suehring
committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
// get the MV in high precision
int xFrac, yFrac, xInt, yInt;
if (!iScaleX)
{
xInt = iMvScaleTmpHor >> 4;
xFrac = iMvScaleTmpHor & 15;
}
else
{
xInt = iMvScaleTmpHor >> 5;
xFrac = iMvScaleTmpHor & 31;
}
if (!iScaleY)
{
yInt = iMvScaleTmpVer >> 4;
yFrac = iMvScaleTmpVer & 15;
}
else
{
yInt = iMvScaleTmpVer >> 5;
yFrac = iMvScaleTmpVer & 31;
}
const CPelBuf refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, pu.blocks[compID].offset(xInt + w, yInt + h), pu.blocks[compID] ) );
PelBuf &dstBuf = dstPic.bufs[compID];
if ( yFrac == 0 )
{
m_if.filterHor( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, xFrac, !bi, chFmt, clpRng );
}
else if ( xFrac == 0 )
{
m_if.filterVer( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, true, !bi, chFmt, clpRng );
}
else
{
m_if.filterHor( compID, (Pel*) refBuf.buf - ((vFilterSize>>1) -1)*refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, blockWidth, blockHeight+vFilterSize-1, xFrac, false, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer( compID, tmpBuf.buf + ((vFilterSize>>1) -1)*tmpBuf.stride, tmpBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, false, !bi, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( true );
}
}
}
}
int getMSB( unsigned x )
{
int msb = 0, bits = ( sizeof(int) << 3 ), y = 1;
while( x > 1u )
{
bits >>= 1;
y = x >> bits;
if( y )
{
x = y;
msb += bits;
}
}
msb += y;
return msb;
}
void InterPrediction::applyBiOptFlow(const PredictionUnit &pu, const CPelUnitBuf &yuvSrc0, const CPelUnitBuf &yuvSrc1, const int &refIdx0, const int &refIdx1, PelUnitBuf &yuvDst, const BitDepths &clipBitDepths)
const int height = yuvDst.Y().height;
const int width = yuvDst.Y().width;
int heightG = height + 2 * BIO_EXTEND_SIZE;
int widthG = width + 2 * BIO_EXTEND_SIZE;
int offsetPos = widthG*BIO_EXTEND_SIZE + BIO_EXTEND_SIZE;
Pel* gradX0 = m_gradX0;
Pel* gradX1 = m_gradX1;
Pel* gradY0 = m_gradY0;
Pel* gradY1 = m_gradY1;
int stridePredMC = widthG + 2;
const Pel* srcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + stridePredMC + 1;
const Pel* srcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + stridePredMC + 1;
const int src0Stride = stridePredMC;
const int src1Stride = stridePredMC;
Pel* dstY = yuvDst.Y().buf;
const int dstStride = yuvDst.Y().stride;
const Pel* srcY0Temp = srcY0;
const Pel* srcY1Temp = srcY1;
for (int refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
Pel* dstTempPtr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + stridePredMC + 1;
Pel* gradY = (refList == 0) ? m_gradY0 : m_gradY1;
Pel* gradX = (refList == 0) ? m_gradX0 : m_gradX1;
xBioGradFilter(dstTempPtr, stridePredMC, widthG, heightG, widthG, gradX, gradY, clipBitDepths.recon[toChannelType(COMPONENT_Y)]);
Pel* padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 2;
for (int y = 0; y< height; y++)
padStr[-1] = padStr[0];
padStr[width] = padStr[width - 1];
padStr += stridePredMC;
padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 1;
::memcpy(padStr - stridePredMC, padStr, sizeof(Pel)*(widthG));
::memcpy(padStr + height*stridePredMC, padStr + (height - 1)*stridePredMC, sizeof(Pel)*(widthG));
}
const ClpRng& clpRng = pu.cu->cs->slice->clpRng(COMPONENT_Y);
const int bitDepth = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const int shiftNum = IF_INTERNAL_PREC + 1 - bitDepth;
const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS;
#if JVET_N0325_BDOF
const int limit = (1<<(std::max<int>(5, bitDepth - 7)));
#else
const int limit = (bitDepth>12)? 2 : ((int)1 << (4 + IF_INTERNAL_PREC - bitDepth - 5));

Karsten Suehring
committed
int* dotProductTemp1 = m_dotProduct1;
int* dotProductTemp2 = m_dotProduct2;
int* dotProductTemp3 = m_dotProduct3;
int* dotProductTemp5 = m_dotProduct5;
int* dotProductTemp6 = m_dotProduct6;
xCalcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, widthG, widthG, heightG, bitDepth);
int xUnit = (width >> 2);
int yUnit = (height >> 2);