Newer
Older

Karsten Suehring
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "InterPrediction.h"
#include "Buffer.h"
#include "UnitTools.h"
#include <memory.h>
#include <algorithm>
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
InterPrediction::InterPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
, m_maxCompIDToPred ( MAX_NUM_COMPONENT )
, m_pcRdCost ( nullptr )
#if JVET_L0265_AFF_MINIMUM4X4
, m_storedMv ( nullptr )
#endif
, m_gradX0(nullptr)
, m_gradY0(nullptr)
, m_gradX1(nullptr)
, m_gradY1(nullptr)

Karsten Suehring
committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
for( uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++ )
{
for( uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ )
{
m_acYuvPred[refList][ch] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++ )
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++ )
{
m_filteredBlock[i][j][c] = nullptr;
}
m_filteredBlockTmp[i][c] = nullptr;
}
}
}
InterPrediction::~InterPrediction()
{
destroy();
}
void InterPrediction::destroy()
{
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
xFree( m_acYuvPred[i][c] );
m_acYuvPred[i][c] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++ )
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++ )
{
xFree( m_filteredBlock[i][j][c] );
m_filteredBlock[i][j][c] = nullptr;
}
xFree( m_filteredBlockTmp[i][c] );
m_filteredBlockTmp[i][c] = nullptr;
}
}
#if JVET_L0124_L0208_TRIANGLE
#if JVET_L0265_AFF_MINIMUM4X4
if (m_storedMv != nullptr)
{
delete[]m_storedMv;
xFree(m_gradX0); m_gradX0 = nullptr;
xFree(m_gradY0); m_gradY0 = nullptr;
xFree(m_gradX1); m_gradX1 = nullptr;
xFree(m_gradY1); m_gradY1 = nullptr;

Karsten Suehring
committed
}
void InterPrediction::init( RdCost* pcRdCost, ChromaFormat chromaFormatIDC )
{
m_pcRdCost = pcRdCost;
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] != nullptr && m_currChromaFormat != chromaFormatIDC )
{
destroy();
}
m_currChromaFormat = chromaFormatIDC;
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] == nullptr ) // check if first is null (in which case, nothing initialised yet)
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
int extWidth = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 16;
int extHeight = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 1;

Karsten Suehring
committed
int extWidth = MAX_CU_SIZE + 16;
int extHeight = MAX_CU_SIZE + 1;

Karsten Suehring
committed
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++ )
{
m_filteredBlockTmp[i][c] = ( Pel* ) xMalloc( Pel, ( extWidth + 4 ) * ( extHeight + 7 + 4 ) );
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++ )
{
m_filteredBlock[i][j][c] = ( Pel* ) xMalloc( Pel, extWidth * extHeight );
}
}
// new structure
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
m_acYuvPred[i][c] = ( Pel* ) xMalloc( Pel, MAX_CU_SIZE * MAX_CU_SIZE );
}
}
#if JVET_L0124_L0208_TRIANGLE
m_triangleBuf.create(UnitArea(chromaFormatIDC, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));

Karsten Suehring
committed
m_iRefListIdx = -1;
m_gradX0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradX1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);

Karsten Suehring
committed
}
#if !JVET_J0090_MEMORY_BANDWITH_MEASURE
m_if.initInterpolationFilter( true );
#endif
if (m_storedMv == nullptr)
{
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;
m_storedMv = new Mv[MVBUFFER_SIZE*MVBUFFER_SIZE];
}

Karsten Suehring
committed
}
bool checkIdenticalMotion( const PredictionUnit &pu, bool checkAffine )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
CHECK( !checkAffine, "In this case, checkAffine should be on." );
#if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) )
#else

Karsten Suehring
committed
const CMotionBuf &mb = pu.getMotionBuf();
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]) && (mb.at( 0, mb.height - 1 ).mv[0] == mb.at( 0, mb.height - 1 ).mv[1])) )

Karsten Suehring
committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
{
return true;
}
}
}
}
}
return false;
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
bool InterPrediction::xCheckIdenticalMotion( const PredictionUnit &pu )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
#if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) )
#else

Karsten Suehring
committed
const CMotionBuf &mb = pu.getMotionBuf();
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]) && (mb.at( 0, mb.height - 1 ).mv[0] == mb.at( 0, mb.height - 1 ).mv[1])) )

Karsten Suehring
committed
{
return true;
}
}
}
}
}
return false;
}
void InterPrediction::xSubPuMC( PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ )
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
int numPartLine, numPartCol, puHeight, puWidth;
{
#if JVET_L0198_L0468_L0104_ATMVP_8x8SUB_BLOCK
numPartLine = std::max(puSize.width >> ATMVP_SUB_BLOCK_SIZE, 1u);
numPartCol = std::max(puSize.height >> ATMVP_SUB_BLOCK_SIZE, 1u);
puHeight = numPartCol == 1 ? puSize.height : 1 << ATMVP_SUB_BLOCK_SIZE;
puWidth = numPartLine == 1 ? puSize.width : 1 << ATMVP_SUB_BLOCK_SIZE;
#else

Karsten Suehring
committed
const Slice& slice = *pu.cs->slice;
numPartLine = std::max(puSize.width >> slice.getSubPuMvpSubblkLog2Size(), 1u);
numPartCol = std::max(puSize.height >> slice.getSubPuMvpSubblkLog2Size(), 1u);
puHeight = numPartCol == 1 ? puSize.height : 1 << slice.getSubPuMvpSubblkLog2Size();
puWidth = numPartLine == 1 ? puSize.width : 1 << slice.getSubPuMvpSubblkLog2Size();

Karsten Suehring
committed
}
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = MRG_TYPE_DEFAULT_N;
#if JVET_L0369_SUBBLOCK_MERGE
bool isAffine = pu.cu->affine;
subPu.cu->affine = false;
#endif

Karsten Suehring
committed
// join sub-pus containing the same motion
bool verMC = puSize.height > puSize.width;
int fstStart = (!verMC ? puPos.y : puPos.x);
int secStart = (!verMC ? puPos.x : puPos.y);
int fstEnd = (!verMC ? puPos.y + puSize.height : puPos.x + puSize.width);
int secEnd = (!verMC ? puPos.x + puSize.width : puPos.y + puSize.height);
int fstStep = (!verMC ? puHeight : puWidth);
int secStep = (!verMC ? puWidth : puHeight);
#if JVET_L0256_BIO
m_subPuMC = true;
#endif

Karsten Suehring
committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = !verMC ? secDim : fstDim;
int y = !verMC ? fstDim : secDim;
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
int length = secStep;
int later = secDim + secStep;
while (later < secEnd)
{
const MotionInfo &laterMi = !verMC ? pu.getMotionInfo(Position{ later, fstDim }) : pu.getMotionInfo(Position{ fstDim, later });
if (laterMi == curMi)
{
length += secStep;
}
else
{
break;
}
later += secStep;
}
int dx = !verMC ? length : puWidth;
int dy = !verMC ? puHeight : length;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
motionCompensation(subPu, subPredBuf, eRefPicList);
secDim = later - secStep;
}
}
#if JVET_L0256_BIO
m_subPuMC = false;
#endif
#if JVET_L0369_SUBBLOCK_MERGE
pu.cu->affine = isAffine;

Karsten Suehring
committed
}
#if JVET_L0293_CPR
void InterPrediction::xChromaMC(PredictionUnit &pu, PelUnitBuf& pcYuvPred)
{
// separated tree, chroma
const CompArea lumaArea = CompArea(COMPONENT_Y, pu.chromaFormat, pu.Cb().lumaPos(), recalcSize(pu.chromaFormat, CHANNEL_TYPE_CHROMA, CHANNEL_TYPE_LUMA, pu.Cb().size()));
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
Picture * refPic = pu.cu->slice->getPic();
for (int y = lumaArea.y; y < lumaArea.y + lumaArea.height; y += MIN_PU_SIZE)
{
for (int x = lumaArea.x; x < lumaArea.x + lumaArea.width; x += MIN_PU_SIZE)
{
const MotionInfo &curMi = pu.cs->picture->cs->getMotionInfo(Position{ x, y });
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, MIN_PU_SIZE, MIN_PU_SIZE)));
PelUnitBuf subPredBuf = pcYuvPred.subBuf(UnitAreaRelative(pu, subPu));
xPredInterBlk(COMPONENT_Cb, subPu, refPic, curMi.mv[0], subPredBuf, false, pu.cu->slice->clpRng(COMPONENT_Cb)
#if JVET_L0256_BIO
xPredInterBlk(COMPONENT_Cr, subPu, refPic, curMi.mv[0], subPredBuf, false, pu.cu->slice->clpRng(COMPONENT_Cr)
#if JVET_L0256_BIO
void InterPrediction::xPredInterUni(const PredictionUnit& pu, const RefPicList& eRefPicList, PelUnitBuf& pcYuvPred, const bool& bi
, const bool& bioApplied
, const bool luma, const bool chroma

Karsten Suehring
committed
{
const SPS &sps = *pu.cs->sps;
int iRefIdx = pu.refIdx[eRefPicList];
Mv mv[3];
#if JVET_L0293_CPR
bool isCPR = false;
if (pu.cs->slice->getRefPic(eRefPicList, iRefIdx)->getPOC() == pu.cs->slice->getPOC())
{
isCPR = true;
}
#endif

Karsten Suehring
committed
if( pu.cu->affine )
{
CHECK( iRefIdx < 0, "iRefIdx incorrect." );
#if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP
mv[0] = pu.mvAffi[eRefPicList][0];
mv[1] = pu.mvAffi[eRefPicList][1];
mv[2] = pu.mvAffi[eRefPicList][2];
#else

Karsten Suehring
committed
const CMotionBuf &mb = pu.getMotionBuf();
mv[0] = mb.at( 0, 0 ).mv[eRefPicList];
mv[1] = mb.at( mb.width - 1, 0 ).mv[eRefPicList];
mv[2] = mb.at( 0, mb.height - 1 ).mv[eRefPicList];

Karsten Suehring
committed
}
else
{
mv[0] = pu.mv[eRefPicList];
}
if ( !pu.cu->affine )
clipMv(mv[0], pu.cu->lumaPos(),
#if JVET_L0231_WRAPAROUND
pu.cu->lumaSize(),
#endif
sps);

Karsten Suehring
committed
for( uint32_t comp = COMPONENT_Y; comp < pcYuvPred.bufs.size() && comp <= m_maxCompIDToPred; comp++ )
{
const ComponentID compID = ComponentID( comp );
#if JVET_L0293_CPR
if (compID == COMPONENT_Y && !luma)
continue;
if (compID != COMPONENT_Y && !chroma)
continue;
#endif

Karsten Suehring
committed
if ( pu.cu->affine )
{
CHECK( bioApplied, "BIO is not allowed with affine" );

Karsten Suehring
committed
xPredAffineBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx ), mv, pcYuvPred, bi, pu.cu->slice->clpRng( compID ) );
}
else
{
xPredInterBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx ), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng( compID )
#if JVET_L0293_CPR
, isCPR

Karsten Suehring
committed
}
}
}
void InterPrediction::xPredInterBi(PredictionUnit& pu, PelUnitBuf &pcYuvPred)
{
const PPS &pps = *pu.cs->pps;
const Slice &slice = *pu.cs->slice;
bool bioApplied = false;
if (pu.cs->sps->getSpsNext().getUseBIO())
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
const bool biocheck0 = !(pps.getWPBiPred() && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
&& PU::isBiPredFromDifferentDir(pu)
&& !(pu.Y().height == 4 || (pu.Y().width == 4 && pu.Y().height == 8))
)
{
bioApplied = true;
}
}
#if JVET_L0646_GBI
if (pu.cu->cs->sps->getSpsNext().getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
bioApplied = false;

Karsten Suehring
committed
for (uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
if( pu.refIdx[refList] < 0)
{
continue;
}
RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
CHECK( pu.refIdx[refList] >= slice.getNumRefIdx( eRefPicList ), "Invalid reference index" );
m_iRefListIdx = refList;
PelUnitBuf pcMbBuf = ( pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[refList][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[refList][2], pcYuvPred.Cr())) );
if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0)
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
#endif
#if JVET_L0293_CPR
, true, true

Karsten Suehring
committed
}
else
{
if( ( (pps.getUseWP() && slice.getSliceType() == P_SLICE) || (pps.getWPBiPred() && slice.getSliceType() == B_SLICE) ) )
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
#if JVET_L0256_BIO
, bioApplied
#endif
#if JVET_L0293_CPR
, true, true
#endif
);

Karsten Suehring
committed
}
else
{
#if JVET_L0124_L0208_TRIANGLE
xPredInterUni( pu, eRefPicList, pcMbBuf, pu.cu->triangle
#if JVET_L0256_BIO
, bioApplied
#endif
#if JVET_L0293_CPR
, true, true
#endif
);
xPredInterUni ( pu, eRefPicList, pcMbBuf, false
#if JVET_L0256_BIO
, bioApplied
#endif
#if JVET_L0293_CPR
, true, true
#endif
);

Karsten Suehring
committed
}
}
}
CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) );
CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) );
if( pps.getWPBiPred() && slice.getSliceType() == B_SLICE )
{
xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred );
}
else if( pps.getUseWP() && slice.getSliceType() == P_SLICE )
{
xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred );
}
else
{
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied );

Karsten Suehring
committed
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs() );

Karsten Suehring
committed
}
}
void InterPrediction::xPredInterBlk ( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv& _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng
, const bool& bioApplied
#if JVET_L0293_CPR
, bool isCPR

Karsten Suehring
committed
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
const bool rndRes = !bi;
int iAddPrecShift = VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;

Karsten Suehring
committed
int shiftHor = 2 + iAddPrecShift + ::getComponentScaleX(compID, chFmt);
int shiftVer = 2 + iAddPrecShift + ::getComponentScaleY(compID, chFmt);
int xFrac = _mv.hor & ((1 << shiftHor) - 1);
int yFrac = _mv.ver & ((1 << shiftVer) - 1);
#if JVET_L0293_CPR
if (isCPR)
{
xFrac = yFrac = 0;
JVET_J0090_SET_CACHE_ENABLE( false );

Karsten Suehring
committed
xFrac <<= VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE - iAddPrecShift;
yFrac <<= VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE - iAddPrecShift;
PelBuf &dstBuf = dstPic.bufs[compID];
unsigned width = dstBuf.width;
unsigned height = dstBuf.height;
CPelBuf refBuf;
{
Position offset = pu.blocks[compID].pos().offset( _mv.getHor() >> shiftHor, _mv.getVer() >> shiftVer );
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, pu.blocks[compID].size() ) );
}
#if JVET_L0256_BIO
// backup data
int backupWidth = width;
int backupHeight = height;
Pel *backupDstBufPtr = dstBuf.buf;
int backupDstBufStride = dstBuf.stride;
if (bioApplied && compID == COMPONENT_Y)
width = width + 2 * BIO_EXTEND_SIZE + 2;
height = height + 2 * BIO_EXTEND_SIZE + 2;
// change MC output
dstBuf.stride = width;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 2;
}
#endif

Karsten Suehring
committed
if( yFrac == 0 )
{
#if JVET_L0256_BIO
m_if.filterHor(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, xFrac, rndRes, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterHor(compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, width, height, xFrac, rndRes, chFmt, clpRng);

Karsten Suehring
committed
}
else if( xFrac == 0 )
{
#if JVET_L0256_BIO
m_if.filterVer(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, true, rndRes, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterVer(compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, width, height, yFrac, true, rndRes, chFmt, clpRng);

Karsten Suehring
committed
}
else
{
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
#if JVET_L0256_BIO
tmpBuf.stride = dstBuf.stride;
#endif

Karsten Suehring
committed
int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
#if JVET_L0256_BIO
m_if.filterHor(compID, (Pel*)refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, backupWidth, backupHeight + vFilterSize - 1, xFrac, false, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterHor(compID, (Pel*) refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, width, height + vFilterSize - 1, xFrac, false, chFmt, clpRng);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( false );
#if JVET_L0256_BIO
m_if.filterVer(compID, (Pel*)tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, false, rndRes, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterVer(compID, (Pel*) tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, width, height, yFrac, false, rndRes, chFmt, clpRng);

Karsten Suehring
committed
}
JVET_J0090_SET_CACHE_ENABLE( true );
if (bioApplied && compID == COMPONENT_Y)
{
refBuf.buf = refBuf.buf - refBuf.stride - 1;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + dstBuf.stride + 1;
bioSampleExtendBilinearFilter(refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, width - 2, height - 2, 1, xFrac, yFrac, rndRes, chFmt, clpRng);
// restore data
width = backupWidth;
height = backupHeight;
dstBuf.buf = backupDstBufPtr;
dstBuf.stride = backupDstBufStride;
}
#endif

Karsten Suehring
committed
}
void InterPrediction::xPredAffineBlk( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv* _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng )
{
if ( (pu.cu->affineType == AFFINEMODEL_6PARAM && _mv[0] == _mv[1] && _mv[0] == _mv[2])
|| (pu.cu->affineType == AFFINEMODEL_4PARAM && _mv[0] == _mv[1])
)
{
Mv mvTemp = _mv[0];
clipMv( mvTemp, pu.cu->lumaPos(),
#if JVET_L0231_WRAPAROUND
pu.cu->lumaSize(),
#endif
*pu.cs->sps );
xPredInterBlk( compID, pu, refPic, mvTemp, dstPic, bi, clpRng
#if JVET_L0256_BIO

Karsten Suehring
committed
return;
}
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
int iScaleX = ::getComponentScaleX( compID, chFmt );
int iScaleY = ::getComponentScaleY( compID, chFmt );
Mv mvLT =_mv[0];
Mv mvRT =_mv[1];
Mv mvLB =_mv[2];
// get affine sub-block width and height
const int width = pu.Y().width;
const int height = pu.Y().height;
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
blockWidth >>= iScaleX;
blockHeight >>= iScaleY;
#if JVET_L0265_AFF_MINIMUM4X4
blockWidth = std::max(blockWidth, AFFINE_MIN_BLOCK_SIZE);
blockHeight = std::max(blockHeight, AFFINE_MIN_BLOCK_SIZE);
CHECK(blockWidth > (width >> iScaleX ), "Sub Block width > Block width");
CHECK(blockHeight > (height >> iScaleX), "Sub Block height > Block height");
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;

Karsten Suehring
committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
const int cxWidth = width >> iScaleX;
const int cxHeight = height >> iScaleY;
const int iHalfBW = blockWidth >> 1;
const int iHalfBH = blockHeight >> 1;
const int iBit = MAX_CU_DEPTH;
int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY;
iDMvHorX = (mvRT - mvLT).getHor() << (iBit - g_aucLog2[cxWidth]);
iDMvHorY = (mvRT - mvLT).getVer() << (iBit - g_aucLog2[cxWidth]);
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
iDMvVerX = (mvLB - mvLT).getHor() << (iBit - g_aucLog2[cxHeight]);
iDMvVerY = (mvLB - mvLT).getVer() << (iBit - g_aucLog2[cxHeight]);
}
else
{
iDMvVerX = -iDMvHorY;
iDMvVerY = iDMvHorX;
}
int iMvScaleHor = mvLT.getHor() << iBit;
int iMvScaleVer = mvLT.getVer() << iBit;
const SPS &sps = *pu.cs->sps;
const int iMvShift = 4;
const int iOffset = 8;
const int iHorMax = ( sps.getPicWidthInLumaSamples() + iOffset - pu.Y().x - 1 ) << iMvShift;
const int iHorMin = ( -(int)pu.cs->pcv->maxCUWidth - iOffset - (int)pu.Y().x + 1 ) << iMvShift;
const int iVerMax = ( sps.getPicHeightInLumaSamples() + iOffset - pu.Y().y - 1 ) << iMvShift;
const int iVerMin = ( -(int)pu.cs->pcv->maxCUHeight - iOffset - (int)pu.Y().y + 1 ) << iMvShift;
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
const int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
const int shift = iBit - 4 + VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE + 2;
// get prediction block by block
for ( int h = 0; h < cxHeight; h += blockHeight )
{
for ( int w = 0; w < cxWidth; w += blockWidth )
{
int iMvScaleTmpHor, iMvScaleTmpVer;
if(compID == COMPONENT_Y)
{
iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
roundAffineMv(iMvScaleTmpHor, iMvScaleTmpVer, shift);
// clip and scale
{
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer);
clipMv(tmpMv, Position(pu.Y().x + w, pu.Y().y + h), Size(blockWidth, blockHeight), sps);
iMvScaleTmpHor = tmpMv.getHor();
iMvScaleTmpVer = tmpMv.getVer();
}
else
{
#endif
iMvScaleTmpHor = std::min<int>(iHorMax, std::max<int>(iHorMin, iMvScaleTmpHor));
iMvScaleTmpVer = std::min<int>(iVerMax, std::max<int>(iVerMin, iMvScaleTmpVer));
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
#if JVET_L0231_WRAPAROUND
}
#endif
}
else
{
Mv curMv = (m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE) * MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + 1)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + 1)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + 1)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + 1)] +
Mv(2, 2));
curMv.set(curMv.getHor() >> 2, curMv.getVer() >> 2);
{
clipMv(curMv, Position(pu.Y().x + (w << iScaleX), pu.Y().y + (h << iScaleY)), Size(blockWidth << iScaleX, blockHeight << iScaleY), sps);
}
#endif
iMvScaleTmpHor = curMv.hor;
iMvScaleTmpVer = curMv.ver;
}

Karsten Suehring
committed
int iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
int iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
roundAffineMv( iMvScaleTmpHor, iMvScaleTmpVer, shift );
// clip and scale
{
Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer);
clipMv(tmpMv, Position(pu.Y().x + (w << iScaleX), pu.Y().y + (h << iScaleY)), Size(blockWidth << iScaleX, blockHeight << iScaleY), sps);
iMvScaleTmpHor = tmpMv.getHor();
iMvScaleTmpVer = tmpMv.getVer();
}
else
{
#endif
iMvScaleTmpHor = std::min<int>( iHorMax, std::max<int>( iHorMin, iMvScaleTmpHor ) );
iMvScaleTmpVer = std::min<int>( iVerMax, std::max<int>( iVerMin, iMvScaleTmpVer ) );
#if JVET_L0231_WRAPAROUND
}
#endif

Karsten Suehring
committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
// get the MV in high precision
int xFrac, yFrac, xInt, yInt;
if (!iScaleX)
{
xInt = iMvScaleTmpHor >> 4;
xFrac = iMvScaleTmpHor & 15;
}
else
{
xInt = iMvScaleTmpHor >> 5;
xFrac = iMvScaleTmpHor & 31;
}
if (!iScaleY)
{
yInt = iMvScaleTmpVer >> 4;
yFrac = iMvScaleTmpVer & 15;
}
else
{
yInt = iMvScaleTmpVer >> 5;
yFrac = iMvScaleTmpVer & 31;
}
const CPelBuf refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, pu.blocks[compID].offset(xInt + w, yInt + h), pu.blocks[compID] ) );
PelBuf &dstBuf = dstPic.bufs[compID];
if ( yFrac == 0 )
{
m_if.filterHor( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, xFrac, !bi, chFmt, clpRng );
}
else if ( xFrac == 0 )
{
m_if.filterVer( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, true, !bi, chFmt, clpRng );
}
else
{
m_if.filterHor( compID, (Pel*) refBuf.buf - ((vFilterSize>>1) -1)*refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, blockWidth, blockHeight+vFilterSize-1, xFrac, false, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer( compID, tmpBuf.buf + ((vFilterSize>>1) -1)*tmpBuf.stride, tmpBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, false, !bi, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( true );
}
}
}
}
int getMSB( unsigned x )
{
int msb = 0, bits = ( sizeof(int) << 3 ), y = 1;
while( x > 1u )
{
bits >>= 1;
y = x >> bits;
if( y )
{
x = y;
msb += bits;
}
}
msb += y;
return msb;
}
void InterPrediction::applyBiOptFlow(const PredictionUnit &pu, const CPelUnitBuf &yuvSrc0, const CPelUnitBuf &yuvSrc1, const int &refIdx0, const int &refIdx1, PelUnitBuf &yuvDst, const BitDepths &clipBitDepths)
const int height = yuvDst.Y().height;
const int width = yuvDst.Y().width;
int heightG = height + 2 * BIO_EXTEND_SIZE;
int widthG = width + 2 * BIO_EXTEND_SIZE;
int offsetPos = widthG*BIO_EXTEND_SIZE + BIO_EXTEND_SIZE;
Pel* gradX0 = m_gradX0;
Pel* gradX1 = m_gradX1;
Pel* gradY0 = m_gradY0;
Pel* gradY1 = m_gradY1;
int stridePredMC = widthG + 2;
const Pel* srcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + stridePredMC + 1;
const Pel* srcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + stridePredMC + 1;
const int src0Stride = stridePredMC;
const int src1Stride = stridePredMC;
Pel* dstY = yuvDst.Y().buf;
const int dstStride = yuvDst.Y().stride;
const Pel* srcY0Temp = srcY0;
const Pel* srcY1Temp = srcY1;
for (int refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
Pel* dstTempPtr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + stridePredMC + 1;
Pel* gradY = (refList == 0) ? m_gradY0 : m_gradY1;
Pel* gradX = (refList == 0) ? m_gradX0 : m_gradX1;
xBioGradFilter(dstTempPtr, stridePredMC, widthG, heightG, widthG, gradX, gradY);
Pel* padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 2;
for (int y = 0; y< height; y++)
padStr[-1] = padStr[0];
padStr[width] = padStr[width - 1];
padStr += stridePredMC;
padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 1;
::memcpy(padStr - stridePredMC, padStr, sizeof(Pel)*(widthG));
::memcpy(padStr + height*stridePredMC, padStr + (height - 1)*stridePredMC, sizeof(Pel)*(widthG));
}
const ClpRng& clpRng = pu.cu->cs->slice->clpRng(COMPONENT_Y);
const int bitDepth = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const int shiftNum = IF_INTERNAL_PREC + 1 - bitDepth;
const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS;
const int limit = ((int)1 << (4 + IF_INTERNAL_PREC - bitDepth - 5));

Karsten Suehring
committed
int* dotProductTemp1 = m_dotProduct1;
int* dotProductTemp2 = m_dotProduct2;
int* dotProductTemp3 = m_dotProduct3;
int* dotProductTemp5 = m_dotProduct5;
int* dotProductTemp6 = m_dotProduct6;
xCalcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, widthG, widthG, heightG);
int xUnit = (width >> 2);
int yUnit = (height >> 2);
Pel *dstY0 = dstY;
gradX0 = m_gradX0; gradX1 = m_gradX1;
gradY0 = m_gradY0; gradY1 = m_gradY1;
for (int yu = 0; yu < yUnit; yu++)
{
for (int xu = 0; xu < xUnit; xu++)
{
if (m_bioPredSubBlkDist[yu*xUnit + xu] < m_bioSubBlkDistThres)
{
srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src1Stride + xu) << 2);
dstY0 = dstY + ((yu*dstStride + xu) << 2);
PelBuf dstPelBuf(dstY0, dstStride, Size(4, 4));
dstPelBuf.addAvg(CPelBuf(srcY0Temp, src0Stride, Size(4, 4)), CPelBuf(srcY1Temp, src1Stride, Size(4, 4)), clpRng);
continue;
}
int sGxdI = 0, sGydI = 0, sGxGy = 0, sGx2 = 0, sGy2 = 0;
int tmpx = 0, tmpy = 0;

Karsten Suehring
committed
dotProductTemp1 = m_dotProduct1 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp2 = m_dotProduct2 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp3 = m_dotProduct3 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp5 = m_dotProduct5 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp6 = m_dotProduct6 + offsetPos + ((yu*widthG + xu) << 2);
xCalcBlkGradient(xu << 2, yu << 2, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, sGx2, sGy2, sGxGy, sGxdI, sGydI, widthG, heightG, (1 << 2));
if (sGx2 > 0)
{
tmpx = rightShiftMSB(sGxdI << 3, sGx2);
tmpx = Clip3(-limit, limit, tmpx);
}
if (sGy2 > 0)
{
int mainsGxGy = sGxGy >> 12;
int secsGxGy = sGxGy & ((1 << 12) - 1);
int tmpData = tmpx * mainsGxGy;
tmpData = ((tmpData << 12) + tmpx*secsGxGy) >> 1;
tmpy = rightShiftMSB(((sGydI << 3) - tmpData), sGy2);
tmpy = Clip3(-limit, limit, tmpy);
}
srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
gradX0 = m_gradX0 + offsetPos + ((yu*widthG + xu) << 2);
gradX1 = m_gradX1 + offsetPos + ((yu*widthG + xu) << 2);
gradY0 = m_gradY0 + offsetPos + ((yu*widthG + xu) << 2);
gradY1 = m_gradY1 + offsetPos + ((yu*widthG + xu) << 2);
dstY0 = dstY + ((yu*dstStride + xu) << 2);
xAddBIOAvg4(srcY0Temp, src0Stride, srcY1Temp, src1Stride, dstY0, dstStride, gradX0, gradX1, gradY0, gradY1, widthG, (1 << 2), (1 << 2), (int)tmpx, (int)tmpy, shiftNum, offset, clpRng);
} // xu
} // yu
}
void InterPrediction::bioSampleExtendBilinearFilter(Pel const* src, int srcStride, Pel *dst, int dstStride, int width, int height, int dim, int fracX, int fracY, bool isLast, const ChromaFormat fmt, const ClpRng& clpRng)
{
Pel const* pSrc = NULL;
Pel* pDst = NULL;
int vFilterSize = NTAPS_BILINEAR;
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
int widthTmp = 0;
int heightTmp = 0;
for (int cand = 0; cand < 4; cand++) // top, left, bottom and right
{
if (cand == 0) // top
{
pSrc = src;
pDst = dst;
widthTmp = width;
heightTmp = dim;
}
else if (cand == 1) // left
{
pSrc = src + dim*srcStride;
pDst = dst + dim*dstStride;
widthTmp = dim;
heightTmp = height - 2 * dim;
}
else if (cand == 2) // bottom
{
pSrc = src + (height - dim)*srcStride;
pDst = dst + (height - dim)*dstStride;
widthTmp = width;
heightTmp = dim;
}
else if (cand == 3) // right
{
pSrc = src + dim*srcStride + width - dim;
pDst = dst + dim*dstStride + width - dim;
widthTmp = dim;
heightTmp = height - 2 * dim;
}
if (fracY == 0)
{
m_if.filterHor(COMPONENT_Y, pSrc, srcStride, pDst, dstStride, widthTmp, heightTmp, fracX, isLast, fmt, clpRng, 1);
}
else if (fracX == 0)
{
m_if.filterVer(COMPONENT_Y, pSrc, srcStride, pDst, dstStride, widthTmp, heightTmp, fracY, true, isLast, fmt, clpRng, 1);
}
else
{
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][COMPONENT_Y], Size(width, height));
tmpBuf.stride = width;
m_if.filterHor(COMPONENT_Y, pSrc - ((vFilterSize >> 1) - 1) * srcStride, srcStride, tmpBuf.buf, tmpBuf.stride, widthTmp, heightTmp + vFilterSize - 1, fracX, false, fmt, clpRng, 1);
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer(COMPONENT_Y, tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, pDst, dstStride, widthTmp, heightTmp, fracY, false, isLast, fmt, clpRng, 1);
JVET_J0090_SET_CACHE_ENABLE( true );
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
}
}
}
bool InterPrediction::xCalcBiPredSubBlkDist(const PredictionUnit &pu, const Pel* pYuvSrc0, const int src0Stride, const Pel* pYuvSrc1, const int src1Stride, const BitDepths &clipBitDepths)
{
const int width = pu.lwidth();
const int height = pu.lheight();
const int clipbd = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const uint32_t distortionShift = DISTORTION_PRECISION_ADJUSTMENT(clipbd);
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clipbd));
const int xUnit = (width >> 2);
const int yUnit = (height >> 2);
m_bioDistThres = (shift <= 5) ? (((32 << (clipbd - 8))*width*height) >> (5 - shift)) : (((32 << (clipbd - 8))*width*height) << (shift - 5));
m_bioSubBlkDistThres = (shift <= 5) ? (((64 << (clipbd - 8)) << 4) >> (5 - shift)) : (((64 << (clipbd - 8)) << 4) << (shift - 5));
m_bioDistThres >>= distortionShift;
m_bioSubBlkDistThres >>= distortionShift;
DistParam cDistParam;
Distortion dist = 0;
for (int yu = 0, blkIdx = 0; yu < yUnit; yu++)
{
for (int xu = 0; xu < xUnit; xu++, blkIdx++)
{
const Pel* pPred0 = pYuvSrc0 + ((yu*src0Stride + xu) << 2);
const Pel* pPred1 = pYuvSrc1 + ((yu*src1Stride + xu) << 2);
m_pcRdCost->setDistParam(cDistParam, pPred0, pPred1, src0Stride, src1Stride, clipbd, COMPONENT_Y, (1 << 2), (1 << 2), 0, 1, false, true);
m_bioPredSubBlkDist[blkIdx] = cDistParam.distFunc(cDistParam);
dist += m_bioPredSubBlkDist[blkIdx];
}
}
return (dist >= m_bioDistThres);
}
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
void InterPrediction::xAddBIOAvg4(const Pel* src0, int src0Stride, const Pel* src1, int src1Stride, Pel *dst, int dstStride, const Pel *gradX0, const Pel *gradX1, const Pel *gradY0, const Pel*gradY1, int gradStride, int width, int height, int tmpx, int tmpy, int shift, int offset, const ClpRng& clpRng)
{
#if ENABLE_SIMD_OPT_BIO
g_pelBufOP.addBIOAvg4(src0, src0Stride, src1, src1Stride, dst, dstStride, gradX0, gradX1, gradY0, gradY1, gradStride, width, height, tmpx, tmpy, shift, offset, clpRng);
#else
int b = 0;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x += 4)
{
b = tmpx * (gradX0[x] - gradX1[x]) + tmpy * (gradY0[x] - gradY1[x]);
b = ((b + 1) >> 1);
dst[x] = ClipPel((int16_t)rightShift((src0[x] + src1[x] + b + offset), shift), clpRng);
b = tmpx * (gradX0[x + 1] - gradX1[x + 1]) + tmpy * (gradY0[x + 1] - gradY1[x + 1]);
b = ((b + 1) >> 1);
dst[x + 1] = ClipPel((int16_t)rightShift((src0[x + 1] + src1[x + 1] + b + offset), shift), clpRng);
b = tmpx * (gradX0[x + 2] - gradX1[x + 2]) + tmpy * (gradY0[x + 2] - gradY1[x + 2]);
b = ((b + 1) >> 1);
dst[x + 2] = ClipPel((int16_t)rightShift((src0[x + 2] + src1[x + 2] + b + offset), shift), clpRng);
b = tmpx * (gradX0[x + 3] - gradX1[x + 3]) + tmpy * (gradY0[x + 3] - gradY1[x + 3]);
b = ((b + 1) >> 1);
dst[x + 3] = ClipPel((int16_t)rightShift((src0[x + 3] + src1[x + 3] + b + offset), shift), clpRng);
}
dst += dstStride; src0 += src0Stride; src1 += src1Stride;
gradX0 += gradStride; gradX1 += gradStride; gradY0 += gradStride; gradY1 += gradStride;
}
#endif
}
void InterPrediction::xBioGradFilter(Pel* pSrc, int srcStride, int width, int height, int gradStride, Pel* gradX, Pel* gradY)
{
#if ENABLE_SIMD_OPT_BIO
g_pelBufOP.bioGradFilter(pSrc, srcStride, width, height, gradStride, gradX, gradY);
#else
Pel* srcTmp = pSrc + srcStride + 1;
Pel* gradXTmp = gradX + gradStride + 1;
Pel* gradYTmp = gradY + gradStride + 1;
for (int y = 0; y < (height - 2 * BIO_EXTEND_SIZE); y++)
{
for (int x = 0; x < (width - 2 * BIO_EXTEND_SIZE); x++)
{
gradYTmp[x] = (srcTmp[x + srcStride] - srcTmp[x - srcStride]) >> 4;
gradXTmp[x] = (srcTmp[x + 1] - srcTmp[x - 1]) >> 4;
}
gradXTmp += gradStride;
gradYTmp += gradStride;
srcTmp += srcStride;
}
gradXTmp = gradX + gradStride + 1;
gradYTmp = gradY + gradStride + 1;
for (int y = 0; y < (height - 2 * BIO_EXTEND_SIZE); y++)
{
gradXTmp[-1] = gradXTmp[0];
gradXTmp[width - 2 * BIO_EXTEND_SIZE] = gradXTmp[width - 2 * BIO_EXTEND_SIZE - 1];
gradXTmp += gradStride;
gradYTmp[-1] = gradYTmp[0];
gradYTmp[width - 2 * BIO_EXTEND_SIZE] = gradYTmp[width - 2 * BIO_EXTEND_SIZE - 1];
gradYTmp += gradStride;
}
gradXTmp = gradX + gradStride;
gradYTmp = gradY + gradStride;
::memcpy(gradXTmp - gradStride, gradXTmp, sizeof(Pel)*(width));
::memcpy(gradXTmp + (height - 2 * BIO_EXTEND_SIZE)*gradStride, gradXTmp + (height - 2 * BIO_EXTEND_SIZE - 1)*gradStride, sizeof(Pel)*(width));
::memcpy(gradYTmp - gradStride, gradYTmp, sizeof(Pel)*(width));
::memcpy(gradYTmp + (height - 2 * BIO_EXTEND_SIZE)*gradStride, gradYTmp + (height - 2 * BIO_EXTEND_SIZE - 1)*gradStride, sizeof(Pel)*(width));
#endif
}
void InterPrediction::xCalcBIOPar(const Pel* srcY0Temp, const Pel* srcY1Temp, const Pel* gradX0, const Pel* gradX1, const Pel* gradY0, const Pel* gradY1, int* dotProductTemp1, int* dotProductTemp2, int* dotProductTemp3, int* dotProductTemp5, int* dotProductTemp6, const int src0Stride, const int src1Stride, const int gradStride, const int widthG, const int heightG)
{
#if ENABLE_SIMD_OPT_BIO
g_pelBufOP.calcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, gradStride, widthG, heightG);
#else
for (int y = 0; y < heightG; y++)
{
for (int x = 0; x < widthG; x++)
{
int temp = (srcY0Temp[x] >> 6) - (srcY1Temp[x] >> 6);
int tempX = (gradX0[x] + gradX1[x]) >> 3;
int tempY = (gradY0[x] + gradY1[x]) >> 3;
dotProductTemp1[x] = tempX * tempX;
dotProductTemp2[x] = tempX * tempY;
dotProductTemp3[x] = -tempX * temp;
dotProductTemp5[x] = tempY * tempY;
dotProductTemp6[x] = -tempY * temp;
}
srcY0Temp += src0Stride;
srcY1Temp += src1Stride;
gradX0 += gradStride;
gradX1 += gradStride;
gradY0 += gradStride;
gradY1 += gradStride;
dotProductTemp1 += widthG;
dotProductTemp2 += widthG;
dotProductTemp3 += widthG;
dotProductTemp5 += widthG;
dotProductTemp6 += widthG;
}
#endif
}
void InterPrediction::xCalcBlkGradient(int sx, int sy, int *arraysGx2, int *arraysGxGy, int *arraysGxdI, int *arraysGy2, int *arraysGydI, int &sGx2, int &sGy2, int &sGxGy, int &sGxdI, int &sGydI, int width, int height, int unitSize)
{
#if ENABLE_SIMD_OPT_BIO
g_pelBufOP.calcBlkGradient(sx, sy, arraysGx2, arraysGxGy, arraysGxdI, arraysGy2, arraysGydI, sGx2, sGy2, sGxGy, sGxdI, sGydI, width, height, unitSize);
#else
int *Gx2 = arraysGx2;
int *Gy2 = arraysGy2;
int *GxGy = arraysGxGy;
int *GxdI = arraysGxdI;
int *GydI = arraysGydI;
// set to the above row due to JVET_K0485_BIO_EXTEND_SIZE
Gx2 -= (BIO_EXTEND_SIZE*width);
Gy2 -= (BIO_EXTEND_SIZE*width);
GxGy -= (BIO_EXTEND_SIZE*width);
GxdI -= (BIO_EXTEND_SIZE*width);
GydI -= (BIO_EXTEND_SIZE*width);
for (int y = -BIO_EXTEND_SIZE; y < unitSize + BIO_EXTEND_SIZE; y++)
{
for (int x = -BIO_EXTEND_SIZE; x < unitSize + BIO_EXTEND_SIZE; x++)
{
sGx2 += Gx2[x];
sGy2 += Gy2[x];
sGxGy += GxGy[x];
sGxdI += GxdI[x];
sGydI += GydI[x];
}
Gx2 += width;
Gy2 += width;
GxGy += width;
GxdI += width;
GydI += width;
}
#endif
}
#endif
#if JVET_L0256_BIO
void InterPrediction::xWeightedAverage(const PredictionUnit& pu, const CPelUnitBuf& pcYuvSrc0, const CPelUnitBuf& pcYuvSrc1, PelUnitBuf& pcYuvDst, const BitDepths& clipBitDepths, const ClpRngs& clpRngs, const bool& bioApplied )

Karsten Suehring
committed
void InterPrediction::xWeightedAverage( const PredictionUnit& pu, const CPelUnitBuf& pcYuvSrc0, const CPelUnitBuf& pcYuvSrc1, PelUnitBuf& pcYuvDst, const BitDepths& clipBitDepths, const ClpRngs& clpRngs )

Karsten Suehring
committed
{
const int iRefIdx0 = pu.refIdx[0];
const int iRefIdx1 = pu.refIdx[1];
if( iRefIdx0 >= 0 && iRefIdx1 >= 0 )
{
#if JVET_L0646_GBI
if( pu.cu->GBiIdx != GBI_DEFAULT )
{
CHECK(bioApplied, "GBi is disallowed with BIO");
pcYuvDst.addWeightedAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, pu.cu->GBiIdx);
return;
}
#endif
if (bioApplied)
const int src0Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2;
const int src1Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2;
const Pel* pSrcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + 2 * src0Stride + 2;
const Pel* pSrcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + 2 * src1Stride + 2;
bool bioEnabled = xCalcBiPredSubBlkDist(pu, pSrcY0, src0Stride, pSrcY1, src1Stride, clipBitDepths);
if (bioEnabled)
{
applyBiOptFlow(pu, pcYuvSrc0, pcYuvSrc1, iRefIdx0, iRefIdx1, pcYuvDst, clipBitDepths);
}
else
{
pcYuvDst.bufs[0].addAvg(CPelBuf(pSrcY0, src0Stride, pu.lumaSize()), CPelBuf(pSrcY1, src1Stride, pu.lumaSize()), clpRngs.comp[0]);
}
}
pcYuvDst.addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, bioApplied);

Karsten Suehring
committed
pcYuvDst.addAvg( pcYuvSrc0, pcYuvSrc1, clpRngs );

Karsten Suehring
committed
}
else if( iRefIdx0 >= 0 && iRefIdx1 < 0 )
{
#if JVET_L0124_L0208_TRIANGLE
if( pu.cu->triangle )
{
pcYuvDst.copyFrom( pcYuvSrc0 );
}
else
#endif

Karsten Suehring
committed
pcYuvDst.copyClip( pcYuvSrc0, clpRngs );
}
else if( iRefIdx0 < 0 && iRefIdx1 >= 0 )
{
#if JVET_L0124_L0208_TRIANGLE
if( pu.cu->triangle )
{
pcYuvDst.copyFrom( pcYuvSrc1 );
}
else
#endif

Karsten Suehring
committed
pcYuvDst.copyClip( pcYuvSrc1, clpRngs );
}
}
void InterPrediction::motionCompensation( PredictionUnit &pu, PelUnitBuf &predBuf, const RefPicList &eRefPicList
#if JVET_L0293_CPR
, const bool luma, const bool chroma
#endif

Karsten Suehring
committed
{
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
#if JVET_L0293_CPR
// dual tree handling for CPR as the only ref
if (!luma || !chroma)
{
if (!luma && chroma)
{
xChromaMC(pu, predBuf);
return;
}
else // (luma && !chroma)
{
xPredInterUni(pu, eRefPicList, predBuf, false
#if JVET_L0256_BIO
, false
#endif
, luma, chroma);
return;
}
}
// else, go with regular MC below
#endif

Karsten Suehring
committed
CodingStructure &cs = *pu.cs;
const PPS &pps = *cs.pps;
const SliceType sliceType = cs.slice->getSliceType();
if( eRefPicList != REF_PIC_LIST_X )
{
if( ( ( sliceType == P_SLICE && pps.getUseWP() ) || ( sliceType == B_SLICE && pps.getWPBiPred() ) ) )
{
xPredInterUni ( pu, eRefPicList, predBuf, true
#if JVET_L0256_BIO
, false
#endif
#if JVET_L0293_CPR
, true, true
#endif
);

Karsten Suehring
committed
xWeightedPredictionUni( pu, predBuf, eRefPicList, predBuf, -1, m_maxCompIDToPred );
}
else
{
xPredInterUni( pu, eRefPicList, predBuf, false
#if JVET_L0256_BIO
, false
#endif
#if JVET_L0293_CPR
, true, true
#endif
);

Karsten Suehring
committed
}
}
else
{
#if JVET_L0293_CPR
if (pu.mergeType != MRG_TYPE_DEFAULT_N && pu.mergeType != MRG_TYPE_CPR)
#else

Karsten Suehring
committed
if( pu.mergeType != MRG_TYPE_DEFAULT_N )

Karsten Suehring
committed
{
xSubPuMC( pu, predBuf, eRefPicList );
}
else if( xCheckIdenticalMotion( pu ) )
{
xPredInterUni( pu, REF_PIC_LIST_0, predBuf, false
#if JVET_L0256_BIO
, false
#endif
#if JVET_L0293_CPR
, true, true
#endif
);

Karsten Suehring
committed
}
else
{
xPredInterBi( pu, predBuf );
}
}
return;
}
void InterPrediction::motionCompensation( CodingUnit &cu, const RefPicList &eRefPicList
#if JVET_L0293_CPR
, const bool luma, const bool chroma
#endif

Karsten Suehring
committed
{
for( auto &pu : CU::traversePUs( cu ) )
{
PelUnitBuf predBuf = cu.cs->getPredBuf( pu );
motionCompensation( pu, predBuf, eRefPicList
#if JVET_L0293_CPR
, luma, chroma
#endif
);

Karsten Suehring
committed
}
}
void InterPrediction::motionCompensation( PredictionUnit &pu, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/
#if JVET_L0293_CPR
, const bool luma, const bool chroma
#endif

Karsten Suehring
committed
{
PelUnitBuf predBuf = pu.cs->getPredBuf( pu );
motionCompensation( pu, predBuf, eRefPicList

Karsten Suehring
committed
}
#if JVET_L0256_BIO
int InterPrediction::rightShiftMSB(int numer, int denom)
{
int d;
int msbIdx = 0;
for (msbIdx = 0; msbIdx<32; msbIdx++)
{
if (denom < ((int)1 << msbIdx))
{
break;
}
}

Karsten Suehring
committed
int shiftIdx = msbIdx - 1;
d = (numer >> shiftIdx);

Karsten Suehring
committed

Karsten Suehring
committed
#if JVET_L0124_L0208_TRIANGLE
void InterPrediction::motionCompensation4Triangle( CodingUnit &cu, MergeCtx &triangleMrgCtx, const bool splitDir, const uint8_t candIdx0, const uint8_t candIdx1 )
{
for( auto &pu : CU::traversePUs( cu ) )
{
const UnitArea localUnitArea( cu.cs->area.chromaFormat, Area( 0, 0, pu.lwidth(), pu.lheight() ) );
PelUnitBuf tmpTriangleBuf = m_triangleBuf.getBuf( localUnitArea );
PelUnitBuf predBuf = cu.cs->getPredBuf( pu );
PU::spanMotionInfo( pu );
motionCompensation( pu, tmpTriangleBuf );
PU::spanMotionInfo( pu );
motionCompensation( pu, predBuf );
weightedTriangleBlk( pu, PU::getTriangleWeights(pu, triangleMrgCtx, candIdx0, candIdx1), splitDir, MAX_NUM_CHANNEL_TYPE, predBuf, tmpTriangleBuf, predBuf );
void InterPrediction::weightedTriangleBlk( PredictionUnit &pu, bool weights, const bool splitDir, int32_t channel, PelUnitBuf& predDst, PelUnitBuf& predSrc0, PelUnitBuf& predSrc1 )
xWeightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, weights, predDst, predSrc0, predSrc1 );
else if( channel == CHANNEL_TYPE_CHROMA )
{
xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, weights, predDst, predSrc0, predSrc1 );
xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, weights, predDst, predSrc0, predSrc1 );
}
else
{
xWeightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, weights, predDst, predSrc0, predSrc1 );
xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, weights, predDst, predSrc0, predSrc1 );
xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, weights, predDst, predSrc0, predSrc1 );
}
}
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
void InterPrediction::xWeightedTriangleBlk( const PredictionUnit &pu, const uint32_t width, const uint32_t height, const ComponentID compIdx, const bool splitDir, const bool weights, PelUnitBuf& predDst, PelUnitBuf& predSrc0, PelUnitBuf& predSrc1 )
{
Pel* dst = predDst .get(compIdx).buf;
Pel* src0 = predSrc0.get(compIdx).buf;
Pel* src1 = predSrc1.get(compIdx).buf;
int32_t strideDst = predDst .get(compIdx).stride - width;
int32_t strideSrc0 = predSrc0.get(compIdx).stride - width;
int32_t strideSrc1 = predSrc1.get(compIdx).stride - width;
const char log2WeightBase = 3;
const ClpRng clipRng = pu.cu->slice->clpRngs().comp[compIdx];
const int32_t clipbd = clipRng.bd;
const int32_t shiftDefault = std::max<int>(2, (IF_INTERNAL_PREC - clipbd));
const int32_t offsetDefault = (1<<(shiftDefault-1)) + IF_INTERNAL_OFFS;
const int32_t shiftWeighted = std::max<int>(2, (IF_INTERNAL_PREC - clipbd)) + log2WeightBase;
const int32_t offsetWeighted = (1 << (shiftWeighted - 1)) + (IF_INTERNAL_OFFS << log2WeightBase);
const int32_t ratioWH = (width > height) ? (width / height) : 1;
const int32_t ratioHW = (width > height) ? 1 : (height / width);
const Pel* pelWeighted = (compIdx == COMPONENT_Y) ? g_trianglePelWeightedLuma[splitDir][weights] : g_trianglePelWeightedChroma[predDst.chromaFormat == CHROMA_444 ? 0 : 1][splitDir][weights];
const int32_t weightedLength = (compIdx == COMPONENT_Y) ? g_triangleWeightLengthLuma[weights] : g_triangleWeightLengthChroma[predDst.chromaFormat == CHROMA_444 ? 0 : 1][weights];
int32_t weightedStartPos = ( splitDir == 0 ) ? ( 0 - (weightedLength >> 1) * ratioWH ) : ( width - ((weightedLength + 1) >> 1) * ratioWH );
int32_t weightedEndPos = weightedStartPos + weightedLength * ratioWH - 1;
int32_t weightedPosoffset =( splitDir == 0 ) ? ratioWH : -ratioWH;
const Pel* tmpPelWeighted;
int32_t x, y, tmpX, tmpY, tmpWeightedStart, tmpWeightedEnd;
for( y = 0; y < height; y+= ratioHW )
*dst++ = ClipPel( rightShift( (splitDir == 0 ? *src1 : *src0) + offsetDefault, shiftDefault), clipRng );
src0++;
src1++;
tmpWeightedStart = std::max((int32_t)0, weightedStartPos);
tmpWeightedEnd = std::min(weightedEndPos, (int32_t)(width - 1));
tmpPelWeighted = pelWeighted;
if( weightedStartPos < 0 )
tmpPelWeighted += abs(weightedStartPos) / ratioWH;
for( x = tmpWeightedStart; x <= tmpWeightedEnd; x+= ratioWH )
*dst++ = ClipPel( rightShift( ((*tmpPelWeighted)*(*src0++) + ((8 - (*tmpPelWeighted)) * (*src1++)) + offsetWeighted), shiftWeighted ), clipRng );
*dst++ = ClipPel( rightShift( (splitDir == 0 ? *src0 : *src1) + offsetDefault, shiftDefault ), clipRng );
src0++;
src1++;
dst += strideDst;
src0 += strideSrc0;
src1 += strideSrc1;
weightedStartPos += weightedPosoffset;
weightedEndPos += weightedPosoffset;
}
}
#endif

Karsten Suehring
committed
#if JVET_J0090_MEMORY_BANDWITH_MEASURE
void InterPrediction::cacheAssign( CacheModel *cache )
{
m_cacheModel = cache;
m_if.cacheAssign( cache );
m_if.initInterpolationFilter( !cache->isCacheEnable() );
}
#endif
//! \}