Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncSearch.cpp
* \brief encoder intra search class
*/
#include "IntraSearch.h"
#include "EncModeCtrl.h"
#include "CommonLib/CommonDef.h"
#include "CommonLib/Rom.h"
#include "CommonLib/Picture.h"
#include "CommonLib/UnitTools.h"

Karsten Suehring
committed
#include "CommonLib/dtrace_next.h"
#include "CommonLib/dtrace_buffer.h"
#include <math.h>
#include <limits>
//! \ingroup EncoderLib
//! \{
Yung-Hsuan Chao (Jessie)
committed
#define PLTCtx(c) SubCtx( Ctx::Palette, c )

Karsten Suehring
committed
IntraSearch::IntraSearch()
: m_pSplitCS (nullptr)
, m_pFullCS (nullptr)
, m_pBestCS (nullptr)
, m_pcEncCfg (nullptr)

Karsten Suehring
committed
, m_pcTrQuant (nullptr)
, m_pcRdCost (nullptr)

Karsten Suehring
committed
, m_CABACEstimator(nullptr)
, m_CtxCache (nullptr)
, m_isInitialized (false)
{
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = nullptr;
}
m_truncBinBits = nullptr;
m_escapeNumBins = nullptr;
m_minErrorIndexMap = nullptr;
for (unsigned i = 0; i < (MAXPLTSIZE + 1); i++)
{
m_indexError[i] = nullptr;
}
for (unsigned i = 0; i < NUM_TRELLIS_STATE; i++)
{
m_statePtRDOQ[i] = nullptr;
}

Karsten Suehring
committed
}
void IntraSearch::destroy()
{
CHECK( !m_isInitialized, "Not initialized" );
if( m_pcEncCfg )
{
const uint32_t uiNumLayersToAllocateSplit = 1;
const uint32_t uiNumLayersToAllocateFull = 1;

Karsten Suehring
committed
const int uiNumSaveLayersToAllocate = 2;
for( uint32_t layer = 0; layer < uiNumSaveLayersToAllocate; layer++ )
{
m_pSaveCS[layer]->destroy();
delete m_pSaveCS[layer];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
for( uint32_t width = 0; width < numWidths; width++ )
{
for( uint32_t height = 0; height < numHeights; height++ )
{
if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )

Karsten Suehring
committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
{
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer]->destroy();
delete m_pSplitCS[width][height][layer];
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS[width][height][layer]->destroy();
delete m_pFullCS[width][height][layer];
}
delete[] m_pSplitCS[width][height];
delete[] m_pFullCS [width][height];
m_pBestCS[width][height]->destroy();
m_pTempCS[width][height]->destroy();
delete m_pTempCS[width][height];
delete m_pBestCS[width][height];
}
}
delete[] m_pSplitCS[width];
delete[] m_pFullCS [width];
delete[] m_pTempCS[width];
delete[] m_pBestCS[width];
}
delete[] m_pSplitCS;
delete[] m_pFullCS;
delete[] m_pBestCS;
delete[] m_pTempCS;
delete[] m_pSaveCS;
}
m_pSplitCS = m_pFullCS = nullptr;
m_pBestCS = m_pTempCS = nullptr;
m_pSaveCS = nullptr;
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
delete[] m_pSharedPredTransformSkip[ch];
m_pSharedPredTransformSkip[ch] = nullptr;
}
m_colorTransResiBuf.destroy();

Karsten Suehring
committed
m_isInitialized = false;
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
if (m_truncBinBits != nullptr)
{
for (unsigned i = 0; i < m_symbolSize; i++)
{
delete[] m_truncBinBits[i];
m_truncBinBits[i] = nullptr;
}
delete[] m_truncBinBits;
m_truncBinBits = nullptr;
}
if (m_escapeNumBins != nullptr)
{
delete[] m_escapeNumBins;
m_escapeNumBins = nullptr;
}
if (m_indexError[0] != nullptr)
{
for (unsigned i = 0; i < (MAXPLTSIZE + 1); i++)
{
delete[] m_indexError[i];
m_indexError[i] = nullptr;
}
}
if (m_minErrorIndexMap != nullptr)
{
delete[] m_minErrorIndexMap;
m_minErrorIndexMap = nullptr;
}
if (m_statePtRDOQ[0] != nullptr)
{
for (unsigned i = 0; i < NUM_TRELLIS_STATE; i++)
{
delete[] m_statePtRDOQ[i];
m_statePtRDOQ[i] = nullptr;
}
}

Karsten Suehring
committed
}
IntraSearch::~IntraSearch()
{
if( m_isInitialized )
{
destroy();
}
}
void IntraSearch::init( EncCfg* pcEncCfg,

Karsten Suehring
committed
TrQuant* pcTrQuant,
RdCost* pcRdCost,
CABACWriter* CABACEstimator,
CtxCache* ctxCache,
const uint32_t maxCUWidth,
const uint32_t maxCUHeight,
const uint32_t maxTotalCUDepth
, const unsigned bitDepthY

Karsten Suehring
committed
)
{
CHECK(m_isInitialized, "Already initialized");
m_pcEncCfg = pcEncCfg;

Karsten Suehring
committed
m_pcTrQuant = pcTrQuant;
m_pcRdCost = pcRdCost;
m_CABACEstimator = CABACEstimator;
m_CtxCache = ctxCache;

Karsten Suehring
committed
const ChromaFormat cform = pcEncCfg->getChromaFormatIdc();
IntraPrediction::init( cform, pcEncCfg->getBitDepth( CHANNEL_TYPE_LUMA ) );
m_tmpStorageLCU.create(UnitArea(cform, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));
m_colorTransResiBuf.create(UnitArea(cform, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));

Karsten Suehring
committed
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = new Pel[MAX_CU_SIZE * MAX_CU_SIZE];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
const uint32_t uiNumLayersToAllocateSplit = 1;
const uint32_t uiNumLayersToAllocateFull = 1;

Karsten Suehring
committed
m_pBestCS = new CodingStructure**[numWidths];
m_pTempCS = new CodingStructure**[numWidths];
m_pFullCS = new CodingStructure***[numWidths];
m_pSplitCS = new CodingStructure***[numWidths];
for( uint32_t width = 0; width < numWidths; width++ )
{
m_pBestCS[width] = new CodingStructure*[numHeights];
m_pTempCS[width] = new CodingStructure*[numHeights];
m_pFullCS [width] = new CodingStructure**[numHeights];
m_pSplitCS[width] = new CodingStructure**[numHeights];
for( uint32_t height = 0; height < numHeights; height++ )
{
if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )

Karsten Suehring
committed
{
m_pBestCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pTempCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pBestCS[width][height]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());
m_pTempCS[width][height]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());

Karsten Suehring
committed
m_pFullCS [width][height] = new CodingStructure*[uiNumLayersToAllocateFull];
m_pSplitCS[width][height] = new CodingStructure*[uiNumLayersToAllocateSplit];
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS [width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pFullCS[width][height][layer]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());

Karsten Suehring
committed
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSplitCS[width][height][layer]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());

Karsten Suehring
committed
}
}
else
{
m_pBestCS[width][height] = nullptr;
m_pTempCS[width][height] = nullptr;
m_pFullCS [width][height] = nullptr;
m_pSplitCS[width][height] = nullptr;
}
}
}
const int uiNumSaveLayersToAllocate = 2;
m_pSaveCS = new CodingStructure*[uiNumSaveLayersToAllocate];
for( uint32_t depth = 0; depth < uiNumSaveLayersToAllocate; depth++ )
{
m_pSaveCS[depth] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSaveCS[depth]->create(UnitArea(cform, Area(0, 0, maxCUWidth, maxCUHeight)), false, (bool)pcEncCfg->getPLTMode());

Karsten Suehring
committed
}
m_isInitialized = true;
if (pcEncCfg->getPLTMode())
m_symbolSize = (1 << bitDepthY); // pixel values are within [0, SymbolSize-1] with size SymbolSize
if (m_truncBinBits == nullptr)
m_truncBinBits = new uint16_t*[m_symbolSize];
for (unsigned i = 0; i < m_symbolSize; i++)
{
m_truncBinBits[i] = new uint16_t[m_symbolSize + 1];
}
if (m_escapeNumBins == nullptr)
m_escapeNumBins = new uint16_t[m_symbolSize];
initTBCTable(bitDepthY);
if (m_indexError[0] == nullptr)
for (unsigned i = 0; i < (MAXPLTSIZE + 1); i++)
{
m_indexError[i] = new double[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
}
}
if (m_minErrorIndexMap == nullptr)
{
m_minErrorIndexMap = new uint8_t[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
}
if (m_statePtRDOQ[0] == nullptr)
{
for (unsigned i = 0; i < NUM_TRELLIS_STATE; i++)
{
m_statePtRDOQ[i] = new uint8_t[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
}

Karsten Suehring
committed
}
//////////////////////////////////////////////////////////////////////////
// INTRA PREDICTION
//////////////////////////////////////////////////////////////////////////
static constexpr double COST_UNKNOWN = -65536.0;
double IntraSearch::findInterCUCost( CodingUnit &cu )
{
if( cu.isConsIntra() && !cu.slice->isIntra() )
{
//search corresponding inter CU cost
for( int i = 0; i < m_numCuInSCIPU; i++ )
{
if( cu.lumaPos() == m_cuAreaInSCIPU[i].pos() && cu.lumaSize() == m_cuAreaInSCIPU[i].size() )
{
return m_cuCostInSCIPU[i];
}
}
}
return COST_UNKNOWN;
}
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#if JVET_W0103_INTRA_MTS
bool IntraSearch::testISPforCurrCU(const CodingUnit &cu)
{
CodingStructure &cs = *cu.cs;
auto &pu = *cu.firstPU;
const CompArea &area = pu.Y();
PelBuf piOrg = cs.getOrgBuf(area);
Pel* pOrg = piOrg.buf;
int uiWidth = area.width;
int uiHeight = area.height;
int iStride = piOrg.stride;
int Gsum = 0;
int nPix = (uiWidth - 2) * (uiHeight - 2);
for (int y = 1; y < (uiHeight - 1); y++)
{
for (int x = 1; x < (uiWidth - 1); x++)
{
const Pel *p = pOrg + y * iStride + x;
int iDy = p[-iStride - 1] + 2 * p[-1] + p[iStride - 1] - p[-iStride + 1] - 2 * p[+1] - p[iStride + 1];
int iDx = p[iStride - 1] + 2 * p[iStride] + p[iStride + 1] - p[-iStride - 1] - 2 * p[-iStride] - p[-iStride + 1];
if (iDy == 0 && iDx == 0)
continue;
int iAmp = (int)(abs(iDx) + abs(iDy));
Gsum += iAmp;
}
}
Gsum = (Gsum + (nPix >> 1)) / nPix;
bool testISP = true;
CHECK(m_numModesISPRDO != -1, "m_numModesISPRDO!=-1");
m_numModesISPRDO = (Gsum < 50 && uiWidth >= 16 && uiHeight >= 16) ? 1 : 2;
return testISP;
}
#endif
bool IntraSearch::estIntraPredLumaQT(CodingUnit &cu, Partitioner &partitioner, const double bestCostSoFar, bool mtsCheckRangeFlag, int mtsFirstCheckId, int mtsLastCheckId, bool moreProbMTSIdxFirst, CodingStructure* bestCS)

Karsten Suehring
committed
{
CodingStructure &cs = *cu.cs;
const SPS &sps = *cs.sps;
const uint32_t uiWidthBit = floorLog2(partitioner.currArea().lwidth() );
const uint32_t uiHeightBit = floorLog2(partitioner.currArea().lheight());

Karsten Suehring
committed
// Lambda calculation at equivalent Qp of 4 is recommended because at that Qp, the quantization divisor is 1.
const double sqrtLambdaForFirstPass = m_pcRdCost->getMotionLambda( ) * FRAC_BITS_SCALE;

Karsten Suehring
committed
//===== loop over partitions =====
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
const TempCtx ctxStartMipFlag ( m_CtxCache, SubCtx( Ctx::MipFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartTpmFlag(m_CtxCache, SubCtx(Ctx::TmpFlag, m_CABACEstimator->getCtx()));
#endif
#if JVET_W0123_TIMD_FUSION
const TempCtx ctxStartTimdFlag ( m_CtxCache, SubCtx( Ctx::TimdFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartIspMode ( m_CtxCache, SubCtx( Ctx::ISPMode, m_CABACEstimator->getCtx() ) );
#if SECONDARY_MPM
const TempCtx ctxStartMPMIdxFlag(m_CtxCache, SubCtx(Ctx::IntraLumaMPMIdx, m_CABACEstimator->getCtx()));
#endif
const TempCtx ctxStartPlanarFlag ( m_CtxCache, SubCtx( Ctx::IntraLumaPlanarFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartIntraMode(m_CtxCache, SubCtx(Ctx::IntraLumaMpmFlag, m_CABACEstimator->getCtx()));
#if SECONDARY_MPM
const TempCtx ctxStartIntraMode2(m_CtxCache, SubCtx(Ctx::IntraLumaSecondMpmFlag, m_CABACEstimator->getCtx()));
#endif
const TempCtx ctxStartMrlIdx ( m_CtxCache, SubCtx( Ctx::MultiRefLineIdx, m_CABACEstimator->getCtx() ) );

Karsten Suehring
committed
CHECK( !cu.firstPU, "CU has no PUs" );
// variables for saving fast intra modes scan results across multiple LFNST passes
bool LFNSTLoadFlag = sps.getUseLFNST() && cu.lfnstIdx != 0;
bool LFNSTSaveFlag = sps.getUseLFNST() && cu.lfnstIdx == 0;
LFNSTSaveFlag &= sps.getUseIntraMTS() ? cu.mtsFlag == 0 : true;
const uint32_t lfnstIdx = cu.lfnstIdx;
double costInterCU = findInterCUCost( cu );
const int width = partitioner.currArea().lwidth();
const int height = partitioner.currArea().lheight();
// Marking MTS usage for faster MTS
// 0: MTS is either not applicable for current CU (cuWidth > MTS_INTRA_MAX_CU_SIZE or cuHeight > MTS_INTRA_MAX_CU_SIZE), not active in the config file or the fast decision algorithm is not used in this case
// 1: MTS fast algorithm can be applied for the current CU, and the DCT2 is being checked
// 2: MTS is being checked for current CU. Stored results of DCT2 can be utilized for speedup
uint8_t mtsUsageFlag = 0;
const int maxSizeEMT = MTS_INTRA_MAX_CU_SIZE;
if( width <= maxSizeEMT && height <= maxSizeEMT && sps.getUseIntraMTS() )
{
mtsUsageFlag = ( sps.getUseLFNST() && cu.mtsFlag == 1 ) ? 2 : 1;
}
if( width * height < 64 && !m_pcEncCfg->getUseFastLFNST() )
{
mtsUsageFlag = 0;
}
#if JVET_W0103_INTRA_MTS
if (!cu.mtsFlag && !cu.lfnstIdx)
{
m_globalBestCostStore = MAX_DOUBLE;
m_globalBestCostValid = false;
if (bestCS->getCU(partitioner.chType) != NULL && bestCS->getCU(partitioner.chType)->predMode != MODE_INTRA && bestCostSoFar != MAX_DOUBLE)
{
m_globalBestCostStore = bestCostSoFar;
m_globalBestCostValid = true;
}
}
#endif
const bool colorTransformIsEnabled = sps.getUseColorTrans() && !CS::isDualITree(cs);
const bool isFirstColorSpace = colorTransformIsEnabled && ((m_pcEncCfg->getRGBFormatFlag() && cu.colorTransform) || (!m_pcEncCfg->getRGBFormatFlag() && !cu.colorTransform));
const bool isSecondColorSpace = colorTransformIsEnabled && ((m_pcEncCfg->getRGBFormatFlag() && !cu.colorTransform) || (!m_pcEncCfg->getRGBFormatFlag() && cu.colorTransform));
Santiago de Luxán Hernández
committed
double bestCurrentCost = bestCostSoFar;
bool ispCanBeUsed = sps.getUseISP() && cu.mtsFlag == 0 && cu.lfnstIdx == 0 && CU::canUseISP(width, height, cu.cs->sps->getMaxTbSize());
bool saveDataForISP = ispCanBeUsed && (!colorTransformIsEnabled || isFirstColorSpace);
bool testISP = ispCanBeUsed && (!colorTransformIsEnabled || !cu.colorTransform);
#if JVET_W0103_INTRA_MTS
if (testISP && m_pcEncCfg->getUseFastISP())
{
m_numModesISPRDO = -1;
testISP &= testISPforCurrCU(cu);
}
#endif
//reset the intra modes lists variables
m_ispCandListHor.clear();
m_ispCandListVer.clear();
Santiago de Luxán Hernández
committed
if( testISP )
Yin Zhao
committed
//reset the variables used for the tests
m_regIntraRDListWithCosts.clear();
int numTotalPartsHor = (int)width >> floorLog2(CU::getISPSplitDim(width, height, TU_1D_VERT_SPLIT));
int numTotalPartsVer = (int)height >> floorLog2(CU::getISPSplitDim(width, height, TU_1D_HORZ_SPLIT));
m_ispTestedModes[0].init( numTotalPartsHor, numTotalPartsVer );
//the total number of subpartitions is modified to take into account the cases where LFNST cannot be combined with ISP due to size restrictions
numTotalPartsHor = sps.getUseLFNST() && CU::canUseLfnstWithISP(cu.Y(), HOR_INTRA_SUBPARTITIONS) ? numTotalPartsHor : 0;
numTotalPartsVer = sps.getUseLFNST() && CU::canUseLfnstWithISP(cu.Y(), VER_INTRA_SUBPARTITIONS) ? numTotalPartsVer : 0;
for (int j = 1; j < NUM_LFNST_NUM_PER_SET; j++)
{
m_ispTestedModes[j].init(numTotalPartsHor, numTotalPartsVer);
}

Karsten Suehring
committed
Alican Nalci
committed
const bool testBDPCM = sps.getBDPCMEnabledFlag() && CU::bdpcmAllowed(cu, ComponentID(partitioner.chType)) && cu.mtsFlag == 0 && cu.lfnstIdx == 0;
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> uiHadModeList;

Karsten Suehring
committed
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandCostList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandHadList;
auto &pu = *cu.firstPU;
bool validReturn = false;

Karsten Suehring
committed
{
CandHadList.clear();
CandCostList.clear();
uiHadModeList.clear();
CHECK(pu.cu != &cu, "PU is not contained in the CU");
#if SECONDARY_MPM
std::memcpy( pu.intraMPM, m_mpmList, sizeof( pu.intraMPM ) );
std::memcpy( pu.intraNonMPM, m_nonMPMList, sizeof( pu.intraNonMPM ) );
#endif

Karsten Suehring
committed
//===== determine set of modes to be tested (using prediction signal only) =====
int numModesAvailable = NUM_LUMA_MODE; // total number of Intra modes
const bool fastMip = sps.getUseMIP() && m_pcEncCfg->getUseFastMIP();
const bool mipAllowed = sps.getUseMIP() && isLuma(partitioner.chType) && ((cu.lfnstIdx == 0) || allowLfnstWithMip(cu.firstPU->lumaSize()));
const bool testMip = mipAllowed && !(cu.lwidth() > (8 * cu.lheight()) || cu.lheight() > (8 * cu.lwidth()));
const bool supportedMipBlkSize = pu.lwidth() <= MIP_MAX_WIDTH && pu.lheight() <= MIP_MAX_HEIGHT;
#if JVET_V0130_INTRA_TMP
const bool tpmAllowed = sps.getUseIntraTMP() && isLuma(partitioner.chType) && ((cu.lfnstIdx == 0) || allowLfnstWithTmp());
const bool testTpm = tpmAllowed && (cu.lwidth() <= sps.getIntraTMPMaxSize() && cu.lheight() <= sps.getIntraTMPMaxSize());
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> uiRdModeList;

Karsten Suehring
committed
int numModesForFullRD = 3;
numModesForFullRD = g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];

Karsten Suehring
committed
#if INTRA_FULL_SEARCH
numModesForFullRD = numModesAvailable;
#endif
#endif
#if JVET_W0123_TIMD_FUSION
bool bestTimdMode = false;
if (isSecondColorSpace)
{
uiRdModeList.clear();
if (m_numSavedRdModeFirstColorSpace[m_savedRdModeIdx] > 0)
{
for (int i = 0; i < m_numSavedRdModeFirstColorSpace[m_savedRdModeIdx]; i++)
{
uiRdModeList.push_back(m_savedRdModeFirstColorSpace[m_savedRdModeIdx][i]);
}
}
else
{
return false;
}

Karsten Suehring
committed
{
// this should always be true
CHECK(!pu.Y().valid(), "PU is not valid");
bool isFirstLineOfCtu = (((pu.block(COMPONENT_Y).y) & ((pu.cs->sps)->getMaxCUWidth() - 1)) == 0);
int numOfPassesExtendRef = ((!sps.getUseMRL() || isFirstLineOfCtu) ? 1 : MRL_NUM_REF_LINES);
pu.multiRefIdx = 0;

Karsten Suehring
committed
CHECK(numModesForFullRD >= numModesAvailable, "Too many modes for full RD search");
PelBuf piOrg = cs.getOrgBuf(area);
PelBuf piPred = cs.getPredBuf(area);

Karsten Suehring
committed
DistParam distParamSad;
DistParam distParamHad;
if (cu.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag())

Karsten Suehring
committed
{
CompArea tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpOrg = m_tmpStorageLCU.getBuf(tmpArea);
m_pcRdCost->setDistParam(distParamSad, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
false); // Use SAD cost
m_pcRdCost->setDistParam(distParamHad, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
true); // Use HAD (SATD) cost

Karsten Suehring
committed
}
m_pcRdCost->setDistParam(distParamSad, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
false); // Use SAD cost
m_pcRdCost->setDistParam(distParamHad, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
true); // Use HAD (SATD) cost

Karsten Suehring
committed
distParamSad.applyWeight = false;
distParamHad.applyWeight = false;

Karsten Suehring
committed
if (testMip && supportedMipBlkSize)
{
numModesForFullRD += fastMip
? std::max(numModesForFullRD, floorLog2(std::min(pu.lwidth(), pu.lheight())) - 1)
: numModesForFullRD;
}
#if JVET_V0130_INTRA_TMP
if( testTpm )
{
numModesForFullRD += 1; // testing tpm
}
const int numHadCand = (testMip ? 2 : 1) * 3 + testTpm;
cu.tmpFlag = false;

Karsten Suehring
committed
//*** Derive (regular) candidates using Hadamard
cu.mipFlag = false;

Karsten Suehring
committed
//===== init pattern for luma prediction =====
initIntraPatternChType(cu, pu.Y(), true);
bool bSatdChecked[NUM_INTRA_MODE];
memset(bSatdChecked, 0, sizeof(bSatdChecked));

Karsten Suehring
committed
if (!LFNSTLoadFlag)
{
for (int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++)
{
uint32_t uiMode = modeIdx;
Distortion minSadHad = 0;

Karsten Suehring
committed
// Skip checking extended Angular modes in the first round of SATD
if (uiMode > DC_IDX && (uiMode & 1))
{
continue;

Karsten Suehring
committed
}
initPredIntraParams(pu, pu.Y(), sps);
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and HAD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
minSadHad += std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
m_CABACEstimator->getCtx() = SubCtx( Ctx::MipFlag, ctxStartMipFlag );
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx( Ctx::ISPMode, ctxStartIspMode );
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraHAD: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, uiMode);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiMode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiMode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
}
if (!sps.getUseMIP() && LFNSTSaveFlag)
{
// save found best modes
m_uiSavedNumRdModesLFNST = numModesForFullRD;
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
LFNSTSaveFlag = false;
}
} // NSSTFlag
if (!sps.getUseMIP() && LFNSTLoadFlag)
// restore saved modes
numModesForFullRD = m_uiSavedNumRdModesLFNST;
uiRdModeList = m_uiSavedRdModeListLFNST;
CandCostList = m_dSavedModeCostLFNST;
// PBINTRA fast
uiHadModeList = m_uiSavedHadModeListLFNST;
CandHadList = m_dSavedHadListLFNST;
} // !LFNSTFlag
if (!(sps.getUseMIP() && LFNSTLoadFlag))
{
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> parentCandList = uiRdModeList;
// Second round of SATD for extended Angular modes
for (int modeIdx = 0; modeIdx < numModesForFullRD; modeIdx++)
{
unsigned parentMode = parentCandList[modeIdx].modeId;
if (parentMode > (DC_IDX + 1) && parentMode < (NUM_LUMA_MODE - 1))
{
for (int subModeIdx = -1; subModeIdx <= 1; subModeIdx += 2)
{
unsigned mode = parentMode + subModeIdx;
if (!bSatdChecked[mode])
{
pu.intraDir[0] = mode;
initPredIntraParams(pu, pu.Y(), sps);
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been
// pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, mode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, mode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
bSatdChecked[mode] = true;
}
}
}
}
if (saveDataForISP)
// we save the regular intra modes list
m_ispCandListHor = uiRdModeList;
}
pu.multiRefIdx = 1;
#if SECONDARY_MPM
const int numMPMs = NUM_PRIMARY_MOST_PROBABLE_MODES;
uint8_t* multiRefMPM = m_mpmList;
#else
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned multiRefMPM[numMPMs];
for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
{
int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];
pu.multiRefIdx = multiRefIdx;
{
initIntraPatternChType(cu, pu.Y(), true);
}
for (int x = 1; x < numMPMs; x++)
{
uint32_t mode = multiRefMPM[x];
{
pu.intraDir[0] = mode;
initPredIntraParams(pu, pu.Y(), sps);
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
updateCandList(ModeInfo(false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, mode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, mode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
}
}
}
CHECKD(uiRdModeList.size() != numModesForFullRD, "Error: RD mode list size");
if (LFNSTSaveFlag && testMip
&& !allowLfnstWithMip(cu.firstPU->lumaSize())) // save a different set for the next run
{
// save found best modes
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
m_uiSavedNumRdModesLFNST =
g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];
m_uiSavedRdModeListLFNST.resize(m_uiSavedNumRdModesLFNST);
m_dSavedModeCostLFNST.resize(m_uiSavedNumRdModesLFNST);
// PBINTRA fast
m_uiSavedHadModeListLFNST.resize(3);
m_dSavedHadListLFNST.resize(3);
LFNSTSaveFlag = false;
}
#if JVET_V0130_INTRA_TMP
// derive TPM candidate using hadamard
if( testTpm )
{
cu.tmpFlag = true;
cu.mipFlag = false;
pu.multiRefIdx = 0;
int foundCandiNum = 0;
bool bsuccessfull = 0;
CodingUnit cu_cpy = cu;
RefTemplateType TemplateType = GetRefTemplateType( cu_cpy, cu_cpy.blocks[COMPONENT_Y] );
if( TemplateType != NO_TEMPLATE )
if( isRefTemplateAvailable( cu_cpy, cu_cpy.blocks[COMPONENT_Y] ) )
m_pcTrQuant->getTargetTemplate( &cu_cpy, pu.lwidth(), pu.lheight(), TemplateType );
m_pcTrQuant->candidateSearchIntra( &cu_cpy, pu.lwidth(), pu.lheight(), TemplateType );
bsuccessfull = m_pcTrQuant->generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
m_pcTrQuant->getTargetTemplate( &cu_cpy, pu.lwidth(), pu.lheight() );
m_pcTrQuant->candidateSearchIntra( &cu_cpy, pu.lwidth(), pu.lheight() );
bsuccessfull = m_pcTrQuant->generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
else
{
foundCandiNum = 1;
bsuccessfull = m_pcTrQuant->generateTM_DC_Prediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), 1 << (cu_cpy.cs->sps->getBitDepth( CHANNEL_TYPE_LUMA ) - 1) );
}
if( bsuccessfull && foundCandiNum >= 1 )
{
Distortion minSadHad =
std::min( distParamSad.distFunc( distParamSad ) * 2, distParamHad.distFunc( distParamHad ) );
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
uint64_t fracModeBits = xFracModeBitsIntra( pu, 0, CHANNEL_TYPE_LUMA );
double cost = double( minSadHad ) + double( fracModeBits ) * sqrtLambdaForFirstPass;
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraTPM: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, 0 );
updateCandList( ModeInfo( 0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1 ), cost, uiRdModeList, CandCostList, numModesForFullRD );
updateCandList( ModeInfo( 0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1 ), 0.8 * double( minSadHad ), uiHadModeList, CandHadList, numHadCand );
}
}
//*** Derive MIP candidates using Hadamard
if (testMip && !supportedMipBlkSize)
{
// avoid estimation for unsupported blk sizes
const int transpOff = getNumModesMip(pu.Y());
const int numModesFull = (transpOff << 1);
for (uint32_t uiModeFull = 0; uiModeFull < numModesFull; uiModeFull++)
{
const bool isTransposed = (uiModeFull >= transpOff ? true : false);
const uint32_t uiMode = (isTransposed ? uiModeFull - transpOff : uiModeFull);
numModesForFullRD++;
uiRdModeList.push_back(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode));
CandCostList.push_back(0);
}
}
else if (testMip)
{
double mipHadCost[MAX_NUM_MIP_MODE] = { MAX_DOUBLE };
initIntraPatternChType(cu, pu.Y());
initIntraMip(pu, pu.Y());
const int transpOff = getNumModesMip(pu.Y());
const int numModesFull = (transpOff << 1);
for (uint32_t uiModeFull = 0; uiModeFull < numModesFull; uiModeFull++)
{
const bool isTransposed = (uiModeFull >= transpOff ? true : false);
const uint32_t uiMode = (isTransposed ? uiModeFull - transpOff : uiModeFull);
pu.mipTransposedFlag = isTransposed;
pu.intraDir[CHANNEL_TYPE_LUMA] = uiMode;
predIntraMip(COMPONENT_Y, piPred, pu);
// Use the min between SAD and HAD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));

Karsten Suehring
committed
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);

Karsten Suehring
committed
double cost = double(minSadHad) + double(fracModeBits) * sqrtLambdaForFirstPass;
mipHadCost[uiModeFull] = cost;
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraMIP: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost,
uiModeFull);

Karsten Suehring
committed
updateCandList(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode), cost, uiRdModeList,
CandCostList, numModesForFullRD + 1);
updateCandList(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode),
0.8 * double(minSadHad), uiHadModeList, CandHadList, numHadCand);
}

Karsten Suehring
committed
const double thresholdHadCost = 1.0 + 1.4 / sqrt((double) (pu.lwidth() * pu.lheight()));
reduceHadCandList(uiRdModeList, CandCostList, numModesForFullRD, thresholdHadCost, mipHadCost, pu,
fastMip);

Karsten Suehring
committed
}