Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "InterPrediction.h"
#include "Buffer.h"
#include "UnitTools.h"

Karsten Suehring
committed
#include <memory.h>
#include <algorithm>
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
InterPrediction::InterPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
, m_maxCompIDToPred ( MAX_NUM_COMPONENT )
, m_pcRdCost ( nullptr )
, m_skipPROF (false)
, m_encOnly (false)
, m_isBi (false)
, m_gradX0(nullptr)
, m_gradY0(nullptr)
, m_gradX1(nullptr)
, m_gradY1(nullptr)

Karsten Suehring
committed
{
for( uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++ )
{
for( uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ )
{
m_acYuvPred[refList][ch] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )

Karsten Suehring
committed
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )

Karsten Suehring
committed
{
m_filteredBlock[i][j][c] = nullptr;
}
m_filteredBlockTmp[i][c] = nullptr;
}
}
m_cYuvPredTempDMVRL1 = nullptr;
m_cYuvPredTempDMVRL0 = nullptr;
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
m_cRefSamplesDMVRL0[ch] = nullptr;
m_cRefSamplesDMVRL1[ch] = nullptr;
}

Karsten Suehring
committed
}
InterPrediction::~InterPrediction()
{
destroy();
}
void InterPrediction::destroy()
{
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
xFree( m_acYuvPred[i][c] );
m_acYuvPred[i][c] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )

Karsten Suehring
committed
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )

Karsten Suehring
committed
{
xFree( m_filteredBlock[i][j][c] );
m_filteredBlock[i][j][c] = nullptr;
}
xFree( m_filteredBlockTmp[i][c] );
m_filteredBlockTmp[i][c] = nullptr;
}
}
if (m_storedMv != nullptr)
{
delete[]m_storedMv;
xFree(m_gradX0); m_gradX0 = nullptr;
xFree(m_gradY0); m_gradY0 = nullptr;
xFree(m_gradX1); m_gradX1 = nullptr;
xFree(m_gradY1); m_gradY1 = nullptr;
xFree(m_cYuvPredTempDMVRL0);
m_cYuvPredTempDMVRL0 = nullptr;
xFree(m_cYuvPredTempDMVRL1);
m_cYuvPredTempDMVRL1 = nullptr;
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
xFree(m_cRefSamplesDMVRL0[ch]);
m_cRefSamplesDMVRL0[ch] = nullptr;
xFree(m_cRefSamplesDMVRL1[ch]);
m_cRefSamplesDMVRL1[ch] = nullptr;
}

Karsten Suehring
committed
}
void InterPrediction::init( RdCost* pcRdCost, ChromaFormat chromaFormatIDC, const int ctuSize )

Karsten Suehring
committed
{
m_pcRdCost = pcRdCost;
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] != nullptr && m_currChromaFormat != chromaFormatIDC )
{
destroy();
}
m_currChromaFormat = chromaFormatIDC;
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] == nullptr ) // check if first is null (in which case, nothing initialised yet)
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
int extWidth = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 16;
int extHeight = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 1;
extWidth = extWidth > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16) ? extWidth : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16;
extHeight = extHeight > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1) ? extHeight : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1;
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )

Karsten Suehring
committed
{
m_filteredBlockTmp[i][c] = ( Pel* ) xMalloc( Pel, ( extWidth + 4 ) * ( extHeight + 7 + 4 ) );
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )

Karsten Suehring
committed
{
m_filteredBlock[i][j][c] = ( Pel* ) xMalloc( Pel, extWidth * extHeight );
}
}
// new structure
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
m_acYuvPred[i][c] = ( Pel* ) xMalloc( Pel, MAX_CU_SIZE * MAX_CU_SIZE );
}
}
m_triangleBuf.create(UnitArea(chromaFormatIDC, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));

Karsten Suehring
committed
m_iRefListIdx = -1;
m_gradX0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradX1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);

Karsten Suehring
committed
}
if (m_cYuvPredTempDMVRL0 == nullptr && m_cYuvPredTempDMVRL1 == nullptr)
m_cYuvPredTempDMVRL0 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)));
m_cYuvPredTempDMVRL1 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)));
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
m_cRefSamplesDMVRL0[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA));
m_cRefSamplesDMVRL1[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA));
}

Karsten Suehring
committed
#if !JVET_J0090_MEMORY_BANDWITH_MEASURE
m_if.initInterpolationFilter( true );
#endif
if (m_storedMv == nullptr)
{
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;
m_storedMv = new Mv[MVBUFFER_SIZE*MVBUFFER_SIZE];
}
#if JVET_P1018_IBC_NO_WRAPAROUND
m_IBCBuffer.create(UnitArea(chromaFormatIDC, Area(0, 0, m_IBCBufferWidth, ctuSize)));
}

Karsten Suehring
committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
bool InterPrediction::xCheckIdenticalMotion( const PredictionUnit &pu )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) )

Karsten Suehring
committed
{
return true;
}
}
}
}
}
return false;
}
void InterPrediction::xSubPuMC( PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ )
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
int numPartLine, numPartCol, puHeight, puWidth;
{
numPartLine = std::max(puSize.width >> ATMVP_SUB_BLOCK_SIZE, 1u);
numPartCol = std::max(puSize.height >> ATMVP_SUB_BLOCK_SIZE, 1u);
puHeight = numPartCol == 1 ? puSize.height : 1 << ATMVP_SUB_BLOCK_SIZE;
puWidth = numPartLine == 1 ? puSize.width : 1 << ATMVP_SUB_BLOCK_SIZE;

Karsten Suehring
committed
}
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = MRG_TYPE_DEFAULT_N;
bool isAffine = pu.cu->affine;
subPu.cu->affine = false;

Karsten Suehring
committed
// join sub-pus containing the same motion
bool verMC = puSize.height > puSize.width;
int fstStart = (!verMC ? puPos.y : puPos.x);
int secStart = (!verMC ? puPos.x : puPos.y);
int fstEnd = (!verMC ? puPos.y + puSize.height : puPos.x + puSize.width);
int secEnd = (!verMC ? puPos.x + puSize.width : puPos.y + puSize.height);
int fstStep = (!verMC ? puHeight : puWidth);
int secStep = (!verMC ? puWidth : puHeight);
pu.refIdx[0] = 0; pu.refIdx[1] = pu.cs->slice->getSliceType() == B_SLICE ? 0 : -1;
bool scaled = !PU::isRefPicSameSize( pu );

Karsten Suehring
committed
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = !verMC ? secDim : fstDim;
int y = !verMC ? fstDim : secDim;
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
int length = secStep;
int later = secDim + secStep;
while (later < secEnd)
{
const MotionInfo &laterMi = !verMC ? pu.getMotionInfo(Position{ later, fstDim }) : pu.getMotionInfo(Position{ fstDim, later });

Karsten Suehring
committed
{
length += secStep;
}
else
{
break;
}
later += secStep;
}
int dx = !verMC ? length : puWidth;
int dy = !verMC ? puHeight : length;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
LI JINGYA
committed
subPu.mmvdEncOptMode = 0;
subPu.mvRefine = false;

Karsten Suehring
committed
motionCompensation(subPu, subPredBuf, eRefPicList);
secDim = later - secStep;
}
}
pu.cu->affine = isAffine;

Karsten Suehring
committed
}
void InterPrediction::xSubPuBio(PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/, PelUnitBuf* yuvDstTmp /*= NULL*/)
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = pu.mergeType;
subPu.mmvdMergeFlag = pu.mmvdMergeFlag;
subPu.mmvdEncOptMode = pu.mmvdEncOptMode;
subPu.mergeFlag = pu.mergeFlag;
subPu.mhIntraFlag = pu.mhIntraFlag;
subPu.mvRefine = pu.mvRefine;
subPu.refIdx[0] = pu.refIdx[0];
subPu.refIdx[1] = pu.refIdx[1];
int fstStart = puPos.y;
int secStart = puPos.x;
int fstEnd = puPos.y + puSize.height;
int secEnd = puPos.x + puSize.width;
int fstStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.height);
int secStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.width);
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = secDim;
int y = fstDim;
int dx = secStep;
int dy = fstStep;

Karsten Suehring
committed
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
if (yuvDstTmp)
{
PelUnitBuf subPredBufTmp = yuvDstTmp->subBuf(UnitAreaRelative(pu, subPu));
motionCompensation(subPu, subPredBuf, eRefPicList, true, true, &subPredBufTmp);
}
else
motionCompensation(subPu, subPredBuf, eRefPicList);
}
}
}
void InterPrediction::xPredInterUni(const PredictionUnit& pu, const RefPicList& eRefPicList, PelUnitBuf& pcYuvPred, const bool& bi
, const bool& bioApplied
, const bool luma, const bool chroma

Karsten Suehring
committed
{
const SPS &sps = *pu.cs->sps;
int iRefIdx = pu.refIdx[eRefPicList];
Mv mv[3];
CHECK( !CU::isIBC( *pu.cu ) && pu.lwidth() == 4 && pu.lheight() == 4, "invalid 4x4 inter blocks" );

Karsten Suehring
committed
if( pu.cu->affine )
{
CHECK( iRefIdx < 0, "iRefIdx incorrect." );
mv[0] = pu.mvAffi[eRefPicList][0];
mv[1] = pu.mvAffi[eRefPicList][1];
mv[2] = pu.mvAffi[eRefPicList][2];

Karsten Suehring
committed
}
else
{
mv[0] = pu.mv[eRefPicList];
}
if( !pu.cu->affine )
{
if( pu.cu->slice->getScalingRatio( eRefPicList, iRefIdx ) == SCALE_1X )
{
clipMv( mv[0], pu.cu->lumaPos(), pu.cu->lumaSize(), sps, *pu.cs->pps );
}

Karsten Suehring
committed
for( uint32_t comp = COMPONENT_Y; comp < pcYuvPred.bufs.size() && comp <= m_maxCompIDToPred; comp++ )
{
const ComponentID compID = ComponentID( comp );
if (compID == COMPONENT_Y && !luma)
continue;
if (compID != COMPONENT_Y && !chroma)
continue;

Karsten Suehring
committed
if ( pu.cu->affine )
{
CHECK( bioApplied, "BIO is not allowed with affine" );
m_iRefListIdx = eRefPicList;
xPredAffineBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx )->unscaledPic, mv, pcYuvPred, bi, pu.cu->slice->clpRng( compID ), pu.cu->slice->getScalingRatio( eRefPicList, iRefIdx ));

Karsten Suehring
committed
}
else
{
if (isIBC)
{
xPredInterBlk(compID, pu, pu.cu->slice->getPic(), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng(compID)
, bioApplied
, isIBC
);
}
else
{
xPredInterBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx )->unscaledPic, mv[0], pcYuvPred, bi, pu.cu->slice->clpRng( compID ), bioApplied, isIBC, pu.cu->slice->getScalingRatio( eRefPicList, iRefIdx ) );

Karsten Suehring
committed
}
}
}
void InterPrediction::xPredInterBi(PredictionUnit& pu, PelUnitBuf &pcYuvPred, PelUnitBuf* yuvPredTmp /*= NULL*/)

Karsten Suehring
committed
{
const PPS &pps = *pu.cs->pps;
const Slice &slice = *pu.cs->slice;
CHECK( !pu.cu->affine && pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 && ( pu.lwidth() + pu.lheight() == 12 ), "invalid 4x8/8x4 bi-predicted blocks" );
Takeshi Chujoh
committed
WPScalingParam *wp0;
WPScalingParam *wp1;
int refIdx0 = pu.refIdx[REF_PIC_LIST_0];
int refIdx1 = pu.refIdx[REF_PIC_LIST_1];
pu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0);
pu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1);

Karsten Suehring
committed
bool bioApplied = false;
if (pu.cs->sps->getBDOFEnabledFlag() && (!pu.cs->slice->getDisBdofDmvrFlag()))
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
Takeshi Chujoh
committed
const bool biocheck0 = !((wp0[COMPONENT_Y].bPresentFlag || wp1[COMPONENT_Y].bPresentFlag) && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
#if JVET_P1023_DMVR_BDOF_RP_CONDITION
&& PU::isBiPredFromDifferentDirEqDistPoc(pu)
#else
&& PU::isBiPredFromDifferentDir(pu)
&& (pu.Y().height >= 8)
&& (pu.Y().width >= 8)
&& ((pu.Y().height * pu.Y().width) >= 128)
bioApplied = true;
if (bioApplied && pu.mhIntraFlag)
bioApplied = false;
if (bioApplied && pu.cu->smvdMode)
{
bioApplied = false;
}
if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
bioApplied = false;
LI JINGYA
committed
if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag) {
bioApplied = false;
}
bool dmvrApplied = false;
dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu);
bool samePicSize = PU::isRefPicSameSize( pu );
dmvrApplied = dmvrApplied && samePicSize;
bioApplied = bioApplied && samePicSize;

Karsten Suehring
committed
for (uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
if( pu.refIdx[refList] < 0)
{
continue;
}
RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
CHECK(CU::isIBC(*pu.cu) && eRefPicList != REF_PIC_LIST_0, "Invalid interdir for ibc mode");
CHECK(CU::isIBC(*pu.cu) && pu.refIdx[refList] != MAX_NUM_REF, "Invalid reference index for ibc mode");
CHECK((CU::isInter(*pu.cu) && pu.refIdx[refList] >= slice.getNumRefIdx(eRefPicList)), "Invalid reference index");

Karsten Suehring
committed
m_iRefListIdx = refList;
PelUnitBuf pcMbBuf = ( pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[refList][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[refList][2], pcYuvPred.Cr())) );
if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0)
{
{
if (yuvPredTmp)
xPredInterUni(pu, eRefPicList, pcMbBuf, true, false, true, true);
continue;
}

Karsten Suehring
committed
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
, true, true
);

Karsten Suehring
committed
}
else
{
if( ( (pps.getUseWP() && slice.getSliceType() == P_SLICE) || (pps.getWPBiPred() && slice.getSliceType() == B_SLICE) ) )
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
, true, true
);

Karsten Suehring
committed
}
else
{
xPredInterUni( pu, eRefPicList, pcMbBuf, pu.cu->triangle
, bioApplied
, true, true
);

Karsten Suehring
committed
}
}
}
Takeshi Chujoh
committed
CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) );
CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) );
if( !pu.cu->triangle && (!dmvrApplied) && (!bioApplied) && pps.getWPBiPred() && slice.getSliceType() == B_SLICE && pu.cu->GBiIdx==GBI_DEFAULT)
Takeshi Chujoh
committed
{
xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred );
if (yuvPredTmp)
yuvPredTmp->copyFrom(pcYuvPred);
Takeshi Chujoh
committed
}
else if( !pu.cu->triangle && pps.getUseWP() && slice.getSliceType() == P_SLICE )
Takeshi Chujoh
committed
{
xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred );
if (yuvPredTmp)
yuvPredTmp->copyFrom(pcYuvPred);
Takeshi Chujoh
committed
}
else
{
if (dmvrApplied)
{
if (yuvPredTmp)
{
yuvPredTmp->addAvg(srcPred0, srcPred1, slice.clpRngs(), false);
}
Takeshi Chujoh
committed
xProcessDMVR(pu, pcYuvPred, slice.clpRngs(), bioApplied);
}
else
{
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied, yuvPredTmp);
Takeshi Chujoh
committed
}
}

Karsten Suehring
committed
}
void InterPrediction::xPredInterBlk ( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv& _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng
, const bool& bioApplied
, const std::pair<int, int> scalingRatio
, SizeType dmvrWidth
, SizeType dmvrHeight
, bool bilinearMC
, Pel *srcPadBuf
, int32_t srcPadStride

Karsten Suehring
committed
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
const bool rndRes = !bi;
int shiftHor = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleX(compID, chFmt);
int shiftVer = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleY(compID, chFmt);

Karsten Suehring
committed
bool wrapRef = false;
Mv mv(_mv);
if( !isIBC && pu.cs->sps->getWrapAroundEnabledFlag() )
wrapRef = wrapClipMv( mv, pu.blocks[0].pos(), pu.blocks[0].size(), pu.cs->sps, pu.cs->pps );
}
bool useAltHpelIf = pu.cu->imv == IMV_HPEL;
if( !isIBC && xPredInterBlkRPR( scalingRatio, *pu.cs->pps, CompArea( compID, chFmt, pu.blocks[compID], Size( dstPic.bufs[compID].width, dstPic.bufs[compID].height ) ), refPic, mv, dstPic.bufs[compID].buf, dstPic.bufs[compID].stride, bi, wrapRef, clpRng, 0, useAltHpelIf ) )
{
CHECK( bilinearMC, "DMVR should be disabled with RPR" );
CHECK( bioApplied, "BDOF should be disabled with RPR" );
else
{
int xFrac = mv.hor & ((1 << shiftHor) - 1);
int yFrac = mv.ver & ((1 << shiftVer) - 1);
JVET_J0090_SET_CACHE_ENABLE( false );

Karsten Suehring
committed
PelBuf &dstBuf = dstPic.bufs[compID];
unsigned width = dstBuf.width;
unsigned height = dstBuf.height;
CPelBuf refBuf;
{
Position offset = pu.blocks[compID].pos().offset( mv.getHor() >> shiftHor, mv.getVer() >> shiftVer );
if (dmvrWidth)
{
refBuf = refPic->getRecoBuf(CompArea(compID, chFmt, offset, Size(dmvrWidth, dmvrHeight)), wrapRef);
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, pu.blocks[compID].size() ), wrapRef);

Karsten Suehring
committed
}
if (NULL != srcPadBuf)
{
refBuf.buf = srcPadBuf;
refBuf.stride = srcPadStride;
}
if (dmvrWidth)
{
width = dmvrWidth;
height = dmvrHeight;
}
// backup data
int backupWidth = width;
int backupHeight = height;
Pel *backupDstBufPtr = dstBuf.buf;
int backupDstBufStride = dstBuf.stride;
if (bioApplied && compID == COMPONENT_Y)
width = width + 2 * BIO_EXTEND_SIZE + 2;
height = height + 2 * BIO_EXTEND_SIZE + 2;
// change MC output
dstBuf.stride = width;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 2;
}

Karsten Suehring
committed
if( yFrac == 0 )
{
m_if.filterHor(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, xFrac, rndRes, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);

Karsten Suehring
committed
}
else if( xFrac == 0 )
{
m_if.filterVer(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, true, rndRes, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);

Karsten Suehring
committed
}
else
{
PelBuf tmpBuf = dmvrWidth ? PelBuf(m_filteredBlockTmp[0][compID], Size(dmvrWidth, dmvrHeight)) : PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
if (dmvrWidth == 0)
tmpBuf.stride = dstBuf.stride;

Karsten Suehring
committed
int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
if (bilinearMC)
{
vFilterSize = NTAPS_BILINEAR;
}
m_if.filterHor(compID, (Pel*)refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, backupWidth, backupHeight + vFilterSize - 1, xFrac, false, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer(compID, (Pel*)tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, false, rndRes, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);

Karsten Suehring
committed
}
JVET_J0090_SET_CACHE_ENABLE( srcPadStride == 0 ); // Enabled only in non-DMVR process, In DMVR process, srcPadStride is always non-zero
if (bioApplied && compID == COMPONENT_Y)
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
int xOffset = (xFrac < 8) ? 1 : 0;
int yOffset = (yFrac < 8) ? 1 : 0;
const Pel* refPel = refBuf.buf - yOffset * refBuf.stride - xOffset;
Pel* dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + dstBuf.stride + 1;
for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++)
{
Pel val = leftShift_round(refPel[w], shift);
dstPel[w] = val - (Pel)IF_INTERNAL_OFFS;
}
refPel = refBuf.buf + (1 - yOffset)*refBuf.stride - xOffset;
dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 1;
for (int h = 0; h < (height - 2 * BIO_EXTEND_SIZE - 2); h++)
{
Pel val = leftShift_round(refPel[0], shift);
dstPel[0] = val - (Pel)IF_INTERNAL_OFFS;
val = leftShift_round(refPel[width - 3], shift);
dstPel[width - 3] = val - (Pel)IF_INTERNAL_OFFS;
refPel += refBuf.stride;
dstPel += dstBuf.stride;
}
refPel = refBuf.buf + (height - 2 * BIO_EXTEND_SIZE - 2 + 1 - yOffset)*refBuf.stride - xOffset;
dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + (height - 2 * BIO_EXTEND_SIZE)*dstBuf.stride + 1;
for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++)
{
Pel val = leftShift_round(refPel[w], shift);
dstPel[w] = val - (Pel)IF_INTERNAL_OFFS;
}
width = backupWidth;
height = backupHeight;
dstBuf.buf = backupDstBufPtr;
dstBuf.stride = backupDstBufStride;
}

Karsten Suehring
committed
}
bool InterPrediction::isSubblockVectorSpreadOverLimit( int a, int b, int c, int d, int predType )
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
{
int s4 = ( 4 << 11 );
int filterTap = 6;
if ( predType == 3 )
{
int refBlkWidth = std::max( std::max( 0, 4 * a + s4 ), std::max( 4 * c, 4 * a + 4 * c + s4 ) ) - std::min( std::min( 0, 4 * a + s4 ), std::min( 4 * c, 4 * a + 4 * c + s4 ) );
int refBlkHeight = std::max( std::max( 0, 4 * b ), std::max( 4 * d + s4, 4 * b + 4 * d + s4 ) ) - std::min( std::min( 0, 4 * b ), std::min( 4 * d + s4, 4 * b + 4 * d + s4 ) );
refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3;
refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3;
if ( refBlkWidth * refBlkHeight > ( filterTap + 9 ) * ( filterTap + 9 ) )
{
return true;
}
}
else
{
int refBlkWidth = std::max( 0, 4 * a + s4 ) - std::min( 0, 4 * a + s4 );
int refBlkHeight = std::max( 0, 4 * b ) - std::min( 0, 4 * b );
refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3;
refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3;
if ( refBlkWidth * refBlkHeight > ( filterTap + 9 ) * ( filterTap + 5 ) )
{
return true;
}
refBlkWidth = std::max( 0, 4 * c ) - std::min( 0, 4 * c );
refBlkHeight = std::max( 0, 4 * d + s4 ) - std::min( 0, 4 * d + s4 );
refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3;
refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3;
if ( refBlkWidth * refBlkHeight > ( filterTap + 5 ) * ( filterTap + 9 ) )
{
return true;
}
}
return false;
}
void InterPrediction::xPredAffineBlk( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv* _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng, const std::pair<int, int> scalingRatio )

Karsten Suehring
committed
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
int iScaleX = ::getComponentScaleX( compID, chFmt );
int iScaleY = ::getComponentScaleY( compID, chFmt );
Mv mvLT =_mv[0];
Mv mvRT =_mv[1];
Mv mvLB =_mv[2];
// get affine sub-block width and height
const int width = pu.Y().width;
const int height = pu.Y().height;
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
CHECK(blockWidth > (width >> iScaleX ), "Sub Block width > Block width");
CHECK(blockHeight > (height >> iScaleY), "Sub Block height > Block height");
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;

Karsten Suehring
committed
const int cxWidth = width >> iScaleX;
const int cxHeight = height >> iScaleY;
const int iHalfBW = blockWidth >> 1;
const int iHalfBH = blockHeight >> 1;
const int iBit = MAX_CU_DEPTH;
int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY;
iDMvHorX = (mvRT - mvLT).getHor() << (iBit - floorLog2(cxWidth));
iDMvHorY = (mvRT - mvLT).getVer() << (iBit - floorLog2(cxWidth));

Karsten Suehring
committed
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
iDMvVerX = (mvLB - mvLT).getHor() << (iBit - floorLog2(cxHeight));
iDMvVerY = (mvLB - mvLT).getVer() << (iBit - floorLog2(cxHeight));

Karsten Suehring
committed
}
else
{
iDMvVerX = -iDMvHorY;
iDMvVerY = iDMvHorX;
}
int iMvScaleHor = mvLT.getHor() << iBit;
int iMvScaleVer = mvLT.getVer() << iBit;
const SPS &sps = *pu.cs->sps;
const int iMvShift = 4;
const int iOffset = 8;
const int iHorMax = ( pu.cs->pps->getPicWidthInLumaSamples() + iOffset - pu.Y().x - 1 ) << iMvShift;

Karsten Suehring
committed
const int iHorMin = ( -(int)pu.cs->pcv->maxCUWidth - iOffset - (int)pu.Y().x + 1 ) << iMvShift;
const int iVerMax = ( pu.cs->pps->getPicHeightInLumaSamples() + iOffset - pu.Y().y - 1 ) << iMvShift;

Karsten Suehring
committed
const int iVerMin = ( -(int)pu.cs->pcv->maxCUHeight - iOffset - (int)pu.Y().y + 1 ) << iMvShift;
const int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
const int shift = iBit - 4 + MV_FRACTIONAL_BITS_INTERNAL;
bool wrapRef = false;
const bool subblkMVSpreadOverLimit = isSubblockVectorSpreadOverLimit( iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY, pu.interDir );

Karsten Suehring
committed
bool enablePROF = (sps.getUsePROF()) && (!m_skipPROF) && (compID == COMPONENT_Y);
enablePROF &= !((pu.cu->affineType == AFFINEMODEL_6PARAM && _mv[0] == _mv[1] && _mv[0] == _mv[2]) || (pu.cu->affineType == AFFINEMODEL_4PARAM && _mv[0] == _mv[1]));
enablePROF &= !subblkMVSpreadOverLimit;
const int profThres = 1 << (iBit + (m_isBi ? 1 : 0));
enablePROF &= !m_encOnly || pu.cu->slice->getCheckLDC() || iDMvHorX > profThres || iDMvHorY > profThres || iDMvVerX > profThres || iDMvVerY > profThres || iDMvHorX < -profThres || iDMvHorY < -profThres || iDMvVerX < -profThres || iDMvVerY < -profThres;
enablePROF &= pu.cs->pps->getPicWidthInLumaSamples() == refPic->getPicWidthInLumaSamples() && pu.cs->pps->getPicHeightInLumaSamples() == refPic->getPicHeightInLumaSamples();
#if !JVET_P0154_PROF_SAMPLE_OFFSET_CLIPPING
if (compID == COMPONENT_Y)
{
m_applyPROF[m_iRefListIdx] = enablePROF;
}
bool isLast = enablePROF ? false : !bi;
#if JVET_P0154_PROF_SAMPLE_OFFSET_CLIPPING
const int cuExtW = AFFINE_MIN_BLOCK_SIZE + PROF_BORDER_EXT_W * 2;
const int cuExtH = AFFINE_MIN_BLOCK_SIZE + PROF_BORDER_EXT_H * 2;
PelBuf gradXExt(m_gradBuf[0], cuExtW, cuExtH);
PelBuf gradYExt(m_gradBuf[1], cuExtW, cuExtH);
#else
const int cuExtW = pu.blocks[compID].width + PROF_BORDER_EXT_W * 2;
const int cuExtH = pu.blocks[compID].height + PROF_BORDER_EXT_H * 2;
PelBuf gradXExt(m_gradBuf[m_iRefListIdx][0], cuExtW, cuExtH);
PelBuf gradYExt(m_gradBuf[m_iRefListIdx][1], cuExtW, cuExtH);
const int MAX_FILTER_SIZE = std::max<int>(NTAPS_LUMA, NTAPS_CHROMA);
const int dstExtW = ((blockWidth + PROF_BORDER_EXT_W * 2 + 7) >> 3) << 3;
const int dstExtH = blockHeight + PROF_BORDER_EXT_H * 2;
PelBuf dstExtBuf(m_filteredBlockTmp[1][compID], dstExtW, dstExtH);
const int refExtH = dstExtH + MAX_FILTER_SIZE - 1;
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], dstExtW, refExtH);
PelBuf &dstBuf = dstPic.bufs[compID];
int *dMvScaleHor = m_dMvBuf[m_iRefListIdx];
int *dMvScaleVer = m_dMvBuf[m_iRefListIdx] + 16;
#if JVET_P0154_PROF_SAMPLE_OFFSET_CLIPPING
if (enablePROF)
#else
if (enablePROF && !bi)
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
{
int* dMvH = dMvScaleHor;
int* dMvV = dMvScaleVer;
int quadHorX = iDMvHorX << 2;
int quadHorY = iDMvHorY << 2;
int quadVerX = iDMvVerX << 2;
int quadVerY = iDMvVerY << 2;
dMvH[0] = ((iDMvHorX + iDMvVerX) << 1) - ((quadHorX + quadVerX) << 1);
dMvV[0] = ((iDMvHorY + iDMvVerY) << 1) - ((quadHorY + quadVerY) << 1);
for (int w = 1; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - 1] + quadHorX;
dMvV[w] = dMvV[w - 1] + quadHorY;
}
dMvH += blockWidth;
dMvV += blockWidth;
for (int h = 1; h < blockHeight; h++)
{
for (int w = 0; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - blockWidth] + quadVerX;
dMvV[w] = dMvV[w - blockWidth] + quadVerY;
}
dMvH += blockWidth;
dMvV += blockWidth;
}
#if JVET_P0653_BDOF_PROF_PARA_DEV
const int mvShift = 8;
#if JVET_P0491_BDOFPROF_MVD_RANGE
const int dmvLimit = ( 1 << 5 ) - 1;
#else
const int dmvLimit = (1 << 5);
#else
#if JVET_P0057_BDOF_PROF_HARMONIZATION
const int mvShift = shift + MV_FRACTIONAL_BITS_INTERNAL + 2 - std::max<int>(5, clpRng.bd - 7);
const int dmvLimit = (1 << (std::max<int>(5, clpRng.bd - 7)));
#else
const int bdlimit = std::max<int>(6, clpRng.bd - 6);
const int dmvLimit = 1 << bdlimit;
#endif
if (!g_pelBufOP.roundIntVector)
{
for (int idx = 0; idx < blockWidth * blockHeight; idx++)
{
#if JVET_P0057_BDOF_PROF_HARMONIZATION
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], mvShift);
#else
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], shift);
#if JVET_P0491_BDOFPROF_MVD_RANGE
dMvScaleHor[idx] = Clip3( -dmvLimit, dmvLimit, dMvScaleHor[idx] );
dMvScaleVer[idx] = Clip3( -dmvLimit, dmvLimit, dMvScaleVer[idx] );
#else
dMvScaleHor[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleHor[idx]);
dMvScaleVer[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleVer[idx]);
}
}
else
{
int sz = blockWidth * blockHeight;
#if JVET_P0057_BDOF_PROF_HARMONIZATION
g_pelBufOP.roundIntVector(dMvScaleHor, sz, mvShift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, mvShift, dmvLimit);
#else
g_pelBufOP.roundIntVector(dMvScaleHor, sz, shift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, shift, dmvLimit);
}
}

Karsten Suehring
committed
// get prediction block by block
for ( int h = 0; h < cxHeight; h += blockHeight )
{
for ( int w = 0; w < cxWidth; w += blockWidth )
{
if (compID == COMPONENT_Y || pu.chromaFormat == CHROMA_444)
if ( !subblkMVSpreadOverLimit )
{
iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
}
else