Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "DepQuant.h"
#include "TrQuant.h"
#include "CodingStructure.h"
#include "UnitTools.h"
#include <bitset>
namespace DQIntern
{
/*================================================================================*/
/*===== =====*/
/*===== R A T E E S T I M A T O R =====*/
/*===== =====*/
/*================================================================================*/
struct NbInfoSbb
{
uint8_t num;
uint8_t inPos[5];
};
struct NbInfoOut
{
uint16_t maxDist;
uint16_t num;
uint16_t outPos[5];
};
struct CoeffFracBits
{
int32_t bits[6];
};
enum ScanPosType { SCAN_ISCSBB = 0, SCAN_SOCSBB = 1, SCAN_EOCSBB = 2 };
struct ScanInfo
{
ScanInfo() {}
int sbbSize;
int numSbb;
int scanIdx;
int rasterPos;
int sbbPos;
int insidePos;
bool eosbb;
ScanPosType spt;
unsigned sigCtxOffsetNext;
unsigned gtxCtxOffsetNext;
int nextInsidePos;
NbInfoSbb nextNbInfoSbb;
int nextSbbRight;
int nextSbbBelow;
#if JVET_M0297_32PT_MTS_ZERO_OUT
int posX;
int posY;
#endif
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
};
class Rom;
struct TUParameters
{
TUParameters ( const Rom& rom, const unsigned width, const unsigned height, const ChannelType chType );
~TUParameters()
{
delete [] m_scanInfo;
}
ChannelType m_chType;
unsigned m_width;
unsigned m_height;
unsigned m_numCoeff;
unsigned m_numSbb;
unsigned m_log2SbbWidth;
unsigned m_log2SbbHeight;
unsigned m_log2SbbSize;
unsigned m_sbbSize;
unsigned m_sbbMask;
unsigned m_widthInSbb;
unsigned m_heightInSbb;
CoeffScanType m_scanType;
const unsigned* m_scanSbbId2SbbPos;
const unsigned* m_scanId2BlkPos;
const unsigned* m_scanId2PosX;
const unsigned* m_scanId2PosY;
const NbInfoSbb* m_scanId2NbInfoSbb;
const NbInfoOut* m_scanId2NbInfoOut;
ScanInfo* m_scanInfo;
private:
void xSetScanInfo( ScanInfo& scanInfo, int scanIdx );
};
class Rom
{
public:
Rom() : m_scansInitialized(false) {}
~Rom() { xUninitScanArrays(); }
void init () { xInitScanArrays(); }
#if JVET_M0102_INTRA_SUBPARTITIONS
const NbInfoSbb* getNbInfoSbb( int hd, int vd, int ch ) const { return m_scanId2NbInfoSbbArray[hd][vd][ch]; }
const NbInfoOut* getNbInfoOut( int hd, int vd, int ch ) const { return m_scanId2NbInfoOutArray[hd][vd][ch]; }
#else
const NbInfoSbb* getNbInfoSbb( int hd, int vd ) const { return m_scanId2NbInfoSbbArray[hd][vd]; }
const NbInfoOut* getNbInfoOut( int hd, int vd ) const { return m_scanId2NbInfoOutArray[hd][vd]; }
const TUParameters* getTUPars ( const CompArea& area, const ComponentID compID ) const
{
return m_tuParameters[g_aucLog2[area.width]][g_aucLog2[area.height]][toChannelType(compID)];
}
private:
void xInitScanArrays ();
void xUninitScanArrays ();
private:
bool m_scansInitialized;
#if JVET_M0102_INTRA_SUBPARTITIONS
NbInfoSbb* m_scanId2NbInfoSbbArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
NbInfoOut* m_scanId2NbInfoOutArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
#else
NbInfoSbb* m_scanId2NbInfoSbbArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ];
NbInfoOut* m_scanId2NbInfoOutArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ];
TUParameters* m_tuParameters [ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
};
void Rom::xInitScanArrays()
{
if( m_scansInitialized )
{
return;
}
::memset( m_scanId2NbInfoSbbArray, 0, sizeof(m_scanId2NbInfoSbbArray) );
::memset( m_scanId2NbInfoOutArray, 0, sizeof(m_scanId2NbInfoOutArray) );
::memset( m_tuParameters, 0, sizeof(m_tuParameters) );
uint32_t raster2id[ MAX_CU_SIZE * MAX_CU_SIZE ];
::memset(raster2id, 0, sizeof(raster2id));
#if JVET_M0102_INTRA_SUBPARTITIONS
for( int ch = 0; ch < MAX_NUM_CHANNEL_TYPE; ch++ )
{
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
if( (hd == 0 && vd <= 1) || (hd <= 1 && vd == 0) )
{
continue;
}
#else
for( int hd = 1; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 1; vd <= MAX_CU_DEPTH; vd++ )
{
const uint32_t blockWidth = (1 << hd);
const uint32_t blockHeight = (1 << vd);
const uint32_t totalValues = blockWidth * blockHeight;
#if JVET_M0102_INTRA_SUBPARTITIONS
const uint32_t log2CGWidth = g_log2SbbSize[ch][hd][vd][0];
const uint32_t log2CGHeight = g_log2SbbSize[ch][hd][vd][1];
#else
const uint32_t log2CGWidth = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
const uint32_t log2CGHeight = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
const uint32_t groupWidth = 1 << log2CGWidth;
const uint32_t groupHeight = 1 << log2CGHeight;
const uint32_t groupSize = groupWidth * groupHeight;
const CoeffScanType scanType = SCAN_DIAG;
const SizeType blkWidthIdx = gp_sizeIdxInfo->idxFrom( blockWidth );
const SizeType blkHeightIdx = gp_sizeIdxInfo->idxFrom( blockHeight );
#if JVET_M0102_INTRA_SUBPARTITIONS
const uint32_t* scanId2RP = g_scanOrder [ch][SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx];
const uint32_t* scanId2X = g_scanOrderPosXY[ch][SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][0];
const uint32_t* scanId2Y = g_scanOrderPosXY[ch][SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][1];
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd][ch];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd][ch];
#else
const uint32_t* scanId2RP = g_scanOrder [SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx];
const uint32_t* scanId2X = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][0];
const uint32_t* scanId2Y = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][1];
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd];
sId2NbSbb = new NbInfoSbb[ totalValues ];
sId2NbOut = new NbInfoOut[ totalValues ];
for( uint32_t scanId = 0; scanId < totalValues; scanId++ )
{
raster2id[ scanId2RP[ scanId ] ] = scanId;
}
for( unsigned scanId = 0; scanId < totalValues; scanId++ )
{
const int posX = scanId2X [ scanId ];
const int posY = scanId2Y [ scanId ];
const int rpos = scanId2RP[ scanId ];
{
//===== inside subband neighbours =====
NbInfoSbb& nbSbb = sId2NbSbb[ scanId ];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
int cpos[5];
cpos[0] = ( posX + 1 < blockWidth ? ( raster2id[rpos+1 ] < groupSize + begSbb ? raster2id[rpos+1 ] - begSbb : 0 ) : 0 );
cpos[1] = ( posX + 2 < blockWidth ? ( raster2id[rpos+2 ] < groupSize + begSbb ? raster2id[rpos+2 ] - begSbb : 0 ) : 0 );
cpos[2] = ( posX + 1 < blockWidth && posY + 1 < blockHeight ? ( raster2id[rpos+1+blockWidth] < groupSize + begSbb ? raster2id[rpos+1+blockWidth] - begSbb : 0 ) : 0 );
cpos[3] = ( posY + 1 < blockHeight ? ( raster2id[rpos+ blockWidth] < groupSize + begSbb ? raster2id[rpos+ blockWidth] - begSbb : 0 ) : 0 );
cpos[4] = ( posY + 2 < blockHeight ? ( raster2id[rpos+2*blockWidth] < groupSize + begSbb ? raster2id[rpos+2*blockWidth] - begSbb : 0 ) : 0 );
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
for( nbSbb.num = 0; true; )
{
int nk = -1;
for( int k = 0; k < 5; k++ )
{
if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
{
nk = k;
}
}
if( nk < 0 )
{
break;
}
nbSbb.inPos[ nbSbb.num++ ] = uint8_t( cpos[nk] );
cpos[nk] = 0;
}
for( int k = nbSbb.num; k < 5; k++ )
{
nbSbb.inPos[k] = 0;
}
}
{
//===== outside subband neighbours =====
NbInfoOut& nbOut = sId2NbOut[ scanId ];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
int cpos[5];
cpos[0] = ( posX + 1 < blockWidth ? ( raster2id[rpos+1 ] >= groupSize + begSbb ? raster2id[rpos+1 ] : 0 ) : 0 );
cpos[1] = ( posX + 2 < blockWidth ? ( raster2id[rpos+2 ] >= groupSize + begSbb ? raster2id[rpos+2 ] : 0 ) : 0 );
cpos[2] = ( posX + 1 < blockWidth && posY + 1 < blockHeight ? ( raster2id[rpos+1+blockWidth] >= groupSize + begSbb ? raster2id[rpos+1+blockWidth] : 0 ) : 0 );
cpos[3] = ( posY + 1 < blockHeight ? ( raster2id[rpos+ blockWidth] >= groupSize + begSbb ? raster2id[rpos+ blockWidth] : 0 ) : 0 );
cpos[4] = ( posY + 2 < blockHeight ? ( raster2id[rpos+2*blockWidth] >= groupSize + begSbb ? raster2id[rpos+2*blockWidth] : 0 ) : 0 );
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
for( nbOut.num = 0; true; )
{
int nk = -1;
for( int k = 0; k < 5; k++ )
{
if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
{
nk = k;
}
}
if( nk < 0 )
{
break;
}
nbOut.outPos[ nbOut.num++ ] = uint16_t( cpos[nk] );
cpos[nk] = 0;
}
for( int k = nbOut.num; k < 5; k++ )
{
nbOut.outPos[k] = 0;
}
nbOut.maxDist = ( scanId == 0 ? 0 : sId2NbOut[scanId-1].maxDist );
for( int k = 0; k < nbOut.num; k++ )
{
if( nbOut.outPos[k] > nbOut.maxDist )
{
nbOut.maxDist = nbOut.outPos[k];
}
}
}
}
// make it relative
for( unsigned scanId = 0; scanId < totalValues; scanId++ )
{
NbInfoOut& nbOut = sId2NbOut[scanId];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
for( int k = 0; k < nbOut.num; k++ )
{
CHECK(begSbb > nbOut.outPos[k], "Position must be past sub block begin");
nbOut.outPos[k] -= begSbb;
}
nbOut.maxDist -= scanId;
}
#if JVET_M0102_INTRA_SUBPARTITIONS
m_tuParameters[hd][vd][ch] = new TUParameters( *this, blockWidth, blockHeight, ChannelType(ch) );
#else
for( int chId = 0; chId < MAX_NUM_CHANNEL_TYPE; chId++ )
{
m_tuParameters[hd][vd][chId] = new TUParameters( *this, blockWidth, blockHeight, ChannelType(chId) );
}
}
}
#if JVET_M0102_INTRA_SUBPARTITIONS
}
#endif
m_scansInitialized = true;
}
void Rom::xUninitScanArrays()
{
if( !m_scansInitialized )
{
return;
}
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#if JVET_M0102_INTRA_SUBPARTITIONS
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
for( int ch = 0; ch < 2; ch++ )
{
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd][ch];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd][ch];
TUParameters*& tuPars = m_tuParameters [hd][vd][ch];
if( sId2NbSbb )
{
delete [] sId2NbSbb;
}
if( sId2NbOut )
{
delete [] sId2NbOut;
}
if( tuPars )
{
delete tuPars;
}
}
}
}
#else
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd];
if( sId2NbSbb )
{
delete [] sId2NbSbb;
}
if( sId2NbOut )
{
delete [] sId2NbOut;
}
for( int chId = 0; chId < MAX_NUM_CHANNEL_TYPE; chId++ )
{
TUParameters*& tuPars = m_tuParameters[hd][vd][chId];
if( tuPars )
{
delete tuPars;
}
}
}
}
m_scansInitialized = false;
}
static Rom g_Rom;
TUParameters::TUParameters( const Rom& rom, const unsigned width, const unsigned height, const ChannelType chType )
{
m_chType = chType;
m_width = width;
m_height = height;
#if JVET_M0257
const uint32_t nonzeroWidth = std::min<uint32_t>(JVET_C0024_ZERO_OUT_TH, m_width);
const uint32_t nonzeroHeight = std::min<uint32_t>(JVET_C0024_ZERO_OUT_TH, m_height);
m_numCoeff = nonzeroWidth * nonzeroHeight;
#else
m_numCoeff = m_width * m_height;
#if JVET_M0102_INTRA_SUBPARTITIONS
m_log2SbbWidth = g_log2SbbSize[m_chType][ g_aucLog2[m_width] ][ g_aucLog2[m_height] ][0];
m_log2SbbHeight = g_log2SbbSize[m_chType][ g_aucLog2[m_width] ][ g_aucLog2[m_height] ][1];
#else
const bool no4x4 = ( ( m_width & 3 ) != 0 || ( m_height & 3 ) != 0 );
m_log2SbbWidth = ( no4x4 ? 1 : 2 );
m_log2SbbHeight = ( no4x4 ? 1 : 2 );
m_log2SbbSize = m_log2SbbWidth + m_log2SbbHeight;
m_sbbSize = ( 1 << m_log2SbbSize );
m_sbbMask = m_sbbSize - 1;
#if JVET_M0257
m_widthInSbb = nonzeroWidth >> m_log2SbbWidth;
m_heightInSbb = nonzeroHeight >> m_log2SbbHeight;
#else
m_widthInSbb = m_width >> m_log2SbbWidth;
m_heightInSbb = m_height >> m_log2SbbHeight;
#endif
m_numSbb = m_widthInSbb * m_heightInSbb;
#if HEVC_USE_MDCS
#error "MDCS is not supported" // use different function...
// m_scanType = CoeffScanType( TU::getCoefScanIdx( tu, m_compID ) );
#else
m_scanType = SCAN_DIAG;
#endif
SizeType hsbb = gp_sizeIdxInfo->idxFrom( m_widthInSbb );
SizeType vsbb = gp_sizeIdxInfo->idxFrom( m_heightInSbb );
SizeType hsId = gp_sizeIdxInfo->idxFrom( m_width );
SizeType vsId = gp_sizeIdxInfo->idxFrom( m_height );
#if JVET_M0102_INTRA_SUBPARTITIONS
m_scanSbbId2SbbPos = g_scanOrder [ chType ][ SCAN_UNGROUPED ][ m_scanType ][ hsbb ][ vsbb ];
m_scanId2BlkPos = g_scanOrder [ chType ][ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
m_scanId2PosX = g_scanOrderPosXY[ chType ][ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
m_scanId2PosY = g_scanOrderPosXY[ chType ][ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
int log2W = g_aucLog2[ m_width ];
int log2H = g_aucLog2[ m_height ];
m_scanId2NbInfoSbb = rom.getNbInfoSbb( log2W, log2H, chType );
m_scanId2NbInfoOut = rom.getNbInfoOut( log2W, log2H, chType );
#else
m_scanSbbId2SbbPos = g_scanOrder [ SCAN_UNGROUPED ][ m_scanType ][ hsbb ][ vsbb ];
m_scanId2BlkPos = g_scanOrder [ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
m_scanId2PosX = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
m_scanId2PosY = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
int log2W = g_aucLog2[ m_width ];
int log2H = g_aucLog2[ m_height ];
m_scanId2NbInfoSbb = rom.getNbInfoSbb( log2W, log2H );
m_scanId2NbInfoOut = rom.getNbInfoOut( log2W, log2H );
m_scanInfo = new ScanInfo[ m_numCoeff ];
for( int scanIdx = 0; scanIdx < m_numCoeff; scanIdx++ )
{
xSetScanInfo( m_scanInfo[scanIdx], scanIdx );
}
}
void TUParameters::xSetScanInfo( ScanInfo& scanInfo, int scanIdx )
{
scanInfo.sbbSize = m_sbbSize;
scanInfo.numSbb = m_numSbb;
scanInfo.scanIdx = scanIdx;
scanInfo.rasterPos = m_scanId2BlkPos[ scanIdx ];
scanInfo.sbbPos = m_scanSbbId2SbbPos[ scanIdx >> m_log2SbbSize ];
scanInfo.insidePos = scanIdx & m_sbbMask;
scanInfo.eosbb = ( scanInfo.insidePos == 0 );
scanInfo.spt = SCAN_ISCSBB;
if( scanInfo.insidePos == m_sbbMask && scanIdx > scanInfo.sbbSize && scanIdx < m_numCoeff - 1 )
scanInfo.spt = SCAN_SOCSBB;
else if( scanInfo.eosbb && scanIdx > 0 && scanIdx < m_numCoeff - m_sbbSize )
scanInfo.spt = SCAN_EOCSBB;
#if JVET_M0297_32PT_MTS_ZERO_OUT
scanInfo.posX = m_scanId2PosX[ scanIdx ];
scanInfo.posY = m_scanId2PosY[ scanIdx ];
#endif
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
if( scanIdx )
{
const int nextScanIdx = scanIdx - 1;
const int diag = m_scanId2PosX[ nextScanIdx ] + m_scanId2PosY[ nextScanIdx ];
if( m_chType == CHANNEL_TYPE_LUMA )
{
scanInfo.sigCtxOffsetNext = ( diag < 2 ? 12 : diag < 5 ? 6 : 0 );
scanInfo.gtxCtxOffsetNext = ( diag < 1 ? 16 : diag < 3 ? 11 : diag < 10 ? 6 : 1 );
}
else
{
scanInfo.sigCtxOffsetNext = ( diag < 2 ? 6 : 0 );
scanInfo.gtxCtxOffsetNext = ( diag < 1 ? 6 : 1 );
}
scanInfo.nextInsidePos = nextScanIdx & m_sbbMask;
scanInfo.nextNbInfoSbb = m_scanId2NbInfoSbb[ nextScanIdx ];
if( scanInfo.eosbb )
{
const int nextSbbPos = m_scanSbbId2SbbPos[ nextScanIdx >> m_log2SbbSize ];
const int nextSbbPosY = nextSbbPos / m_widthInSbb;
const int nextSbbPosX = nextSbbPos - nextSbbPosY * m_widthInSbb;
scanInfo.nextSbbRight = ( nextSbbPosX < m_widthInSbb - 1 ? nextSbbPos + 1 : 0 );
scanInfo.nextSbbBelow = ( nextSbbPosY < m_heightInSbb - 1 ? nextSbbPos + m_widthInSbb : 0 );
}
}
}
class RateEstimator
{
public:
RateEstimator () {}
~RateEstimator() {}
void initCtx ( const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID, const FracBitsAccess& fracBitsAccess );
inline const BinFracBits *sigSbbFracBits() const { return m_sigSbbFracBits; }
inline const BinFracBits *sigFlagBits(unsigned stateId) const
{
return m_sigFracBits[std::max(((int) stateId) - 1, 0)];
}
inline const CoeffFracBits *gtxFracBits(unsigned stateId) const { return m_gtxFracBits; }
inline int32_t lastOffset(unsigned scanIdx) const
{
return m_lastBitsX[m_scanId2PosX[scanIdx]] + m_lastBitsY[m_scanId2PosY[scanIdx]];
}
private:
void xSetLastCoeffOffset ( const FracBitsAccess& fracBitsAccess, const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID );
void xSetSigSbbFracBits ( const FracBitsAccess& fracBitsAccess, ChannelType chType );
void xSetSigFlagBits ( const FracBitsAccess& fracBitsAccess, ChannelType chType );
void xSetGtxFlagBits ( const FracBitsAccess& fracBitsAccess, ChannelType chType );
private:
static const unsigned sm_numCtxSetsSig = 3;
static const unsigned sm_numCtxSetsGtx = 2;
static const unsigned sm_maxNumSigSbbCtx = 2;
static const unsigned sm_maxNumSigCtx = 18;
static const unsigned sm_maxNumGtxCtx = 21;
private:
const unsigned* m_scanId2PosX;
const unsigned* m_scanId2PosY;
int32_t m_lastBitsX [ MAX_TU_SIZE ];
int32_t m_lastBitsY [ MAX_TU_SIZE ];
BinFracBits m_sigSbbFracBits [ sm_maxNumSigSbbCtx ];
BinFracBits m_sigFracBits [ sm_numCtxSetsSig ][ sm_maxNumSigCtx ];
CoeffFracBits m_gtxFracBits [ sm_maxNumGtxCtx ];

Karsten Suehring
committed
};
void RateEstimator::initCtx( const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID, const FracBitsAccess& fracBitsAccess )
{
m_scanId2PosX = tuPars.m_scanId2PosX;
m_scanId2PosY = tuPars.m_scanId2PosY;
xSetSigSbbFracBits ( fracBitsAccess, tuPars.m_chType );
xSetSigFlagBits ( fracBitsAccess, tuPars.m_chType );
xSetGtxFlagBits ( fracBitsAccess, tuPars.m_chType );
xSetLastCoeffOffset ( fracBitsAccess, tuPars, tu, compID );
}
void RateEstimator::xSetLastCoeffOffset( const FracBitsAccess& fracBitsAccess, const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID )
{
const ChannelType chType = ( compID == COMPONENT_Y ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA );
int32_t cbfDeltaBits = 0;
if( compID == COMPONENT_Y && !CU::isIntra(*tu.cu) && !tu.depth )
{
const BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtRootCbf() );
cbfDeltaBits = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
}
else
{
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
#if JVET_M0102_INTRA_SUBPARTITIONS
BinFracBits bits;
bool prevLumaCbf = false;
bool lastCbfIsInferred = false;
bool useIntraSubPartitions = tu.cu->ispMode && isLuma(chType);
if( useIntraSubPartitions )
{
bool rootCbfSoFar = false;
bool isLastSubPartition = CU::isISPLast(*tu.cu, tu.Y(), compID);
uint32_t nTus = tu.cu->ispMode == HOR_INTRA_SUBPARTITIONS ? tu.cu->lheight() >> g_aucLog2[tu.lheight()] : tu.cu->lwidth() >> g_aucLog2[tu.lwidth()];
if( isLastSubPartition )
{
TransformUnit* tuPointer = tu.cu->firstTU;
for( int tuIdx = 0; tuIdx < nTus - 1; tuIdx++ )
{
rootCbfSoFar |= TU::getCbfAtDepth(*tuPointer, COMPONENT_Y, tu.depth);
tuPointer = tuPointer->next;
}
if( !rootCbfSoFar )
{
lastCbfIsInferred = true;
}
}
if( !lastCbfIsInferred )
{
prevLumaCbf = TU::getPrevTuCbfAtDepth(tu, compID, tu.depth);
}
bits = fracBitsAccess.getFracBitsArray(Ctx::QtCbf[compID](DeriveCtx::CtxQtCbf(compID, tu.depth, prevLumaCbf, true)));
}
else
{
bits = fracBitsAccess.getFracBitsArray(Ctx::QtCbf[compID](DeriveCtx::CtxQtCbf(compID, tu.depth, tu.cbf[COMPONENT_Cb])));
}
cbfDeltaBits = lastCbfIsInferred ? 0 : int32_t(bits.intBits[1]) - int32_t(bits.intBits[0]);
#else
BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtCbf[compID]( DeriveCtx::CtxQtCbf( compID, tu.depth, tu.cbf[COMPONENT_Cb] ) ) );
cbfDeltaBits = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
}
static const unsigned prefixCtx[] = { 0, 0, 0, 3, 6, 10, 15, 21 };
uint32_t ctxBits [ LAST_SIGNIFICANT_GROUPS ];
for( unsigned xy = 0; xy < 2; xy++ )
{
int32_t bitOffset = ( xy ? cbfDeltaBits : 0 );
int32_t* lastBits = ( xy ? m_lastBitsY : m_lastBitsX );
const unsigned size = ( xy ? tuPars.m_height : tuPars.m_width );
const unsigned log2Size = g_aucNextLog2[ size ];
#if HEVC_USE_MDCS
const bool useYCtx = ( m_scanType == SCAN_VER ? ( xy == 0 ) : ( xy != 0 ) );
#else
const bool useYCtx = ( xy != 0 );
#endif
const CtxSet& ctxSetLast = ( useYCtx ? Ctx::LastY : Ctx::LastX )[ chType ];
const unsigned lastShift = ( compID == COMPONENT_Y ? (log2Size+1)>>2 : Clip3<unsigned>(0,2,size>>3) );
const unsigned lastOffset = ( compID == COMPONENT_Y ? ( prefixCtx[log2Size] ) : 0 );
uint32_t sumFBits = 0;
#if JVET_M0257
unsigned maxCtxId = g_uiGroupIdx[std::min<unsigned>(JVET_C0024_ZERO_OUT_TH, size) - 1];
#else
unsigned maxCtxId = g_uiGroupIdx[ size - 1 ];
#endif
for( unsigned ctxId = 0; ctxId < maxCtxId; ctxId++ )
{
const BinFracBits bits = fracBitsAccess.getFracBitsArray( ctxSetLast( lastOffset + ( ctxId >> lastShift ) ) );
ctxBits[ ctxId ] = sumFBits + bits.intBits[0] + ( ctxId>3 ? ((ctxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
sumFBits += bits.intBits[1];
}
ctxBits [ maxCtxId ] = sumFBits + ( maxCtxId>3 ? ((maxCtxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
#if JVET_M0257
for (unsigned pos = 0; pos < std::min<unsigned>(JVET_C0024_ZERO_OUT_TH, size); pos++)
#else
for( unsigned pos = 0; pos < size; pos++ )
#endif
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
{
lastBits[ pos ] = ctxBits[ g_uiGroupIdx[ pos ] ];
}
}
}
void RateEstimator::xSetSigSbbFracBits( const FracBitsAccess& fracBitsAccess, ChannelType chType )
{
const CtxSet& ctxSet = Ctx::SigCoeffGroup[ chType ];
for( unsigned ctxId = 0; ctxId < sm_maxNumSigSbbCtx; ctxId++ )
{
m_sigSbbFracBits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
}
}
void RateEstimator::xSetSigFlagBits( const FracBitsAccess& fracBitsAccess, ChannelType chType )
{
for( unsigned ctxSetId = 0; ctxSetId < sm_numCtxSetsSig; ctxSetId++ )
{
BinFracBits* bits = m_sigFracBits [ ctxSetId ];
const CtxSet& ctxSet = Ctx::SigFlag [ chType + 2*ctxSetId ];
const unsigned numCtx = ( chType == CHANNEL_TYPE_LUMA ? 18 : 12 );
for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
{
bits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
}
}
}
void RateEstimator::xSetGtxFlagBits( const FracBitsAccess& fracBitsAccess, ChannelType chType )
{
const CtxSet& ctxSetPar = Ctx::ParFlag [ chType ];
const CtxSet& ctxSetGt1 = Ctx::GtxFlag [ 2 + chType ];
const CtxSet& ctxSetGt2 = Ctx::GtxFlag [ chType ];
const unsigned numCtx = ( chType == CHANNEL_TYPE_LUMA ? 21 : 11 );
for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
{
BinFracBits fbPar = fracBitsAccess.getFracBitsArray( ctxSetPar( ctxId ) );
BinFracBits fbGt1 = fracBitsAccess.getFracBitsArray( ctxSetGt1( ctxId ) );
BinFracBits fbGt2 = fracBitsAccess.getFracBitsArray( ctxSetGt2( ctxId ) );
CoeffFracBits& cb = m_gtxFracBits[ ctxId ];
int32_t par0 = (1<<SCALE_BITS) + int32_t(fbPar.intBits[0]);
int32_t par1 = (1<<SCALE_BITS) + int32_t(fbPar.intBits[1]);
cb.bits[0] = 0;
cb.bits[1] = fbGt1.intBits[0] + (1 << SCALE_BITS);
cb.bits[2] = fbGt1.intBits[1] + par0 + fbGt2.intBits[0];
cb.bits[3] = fbGt1.intBits[1] + par1 + fbGt2.intBits[0];
cb.bits[4] = fbGt1.intBits[1] + par0 + fbGt2.intBits[1];
cb.bits[5] = fbGt1.intBits[1] + par1 + fbGt2.intBits[1];
}
}

Karsten Suehring
committed
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/*================================================================================*/
/*===== =====*/
/*===== D A T A S T R U C T U R E S =====*/
/*===== =====*/
/*================================================================================*/
struct PQData
{
TCoeff absLevel;
int64_t deltaDist;
};
struct Decision
{
int64_t rdCost;
TCoeff absLevel;
int prevId;
};
/*================================================================================*/
/*===== =====*/
/*===== P R E - Q U A N T I Z E R =====*/
/*===== =====*/
/*================================================================================*/
class Quantizer
{
public:
Quantizer() {}
void dequantBlock ( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff ) const;
void initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda );
inline void preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const;
inline TCoeff getLastThreshold() const { return m_thresLast; }
inline TCoeff getSSbbThreshold() const { return m_thresSSbb; }
private:
// quantization
int m_QShift;
int64_t m_QAdd;
int64_t m_QScale;
TCoeff m_maxQIdx;
TCoeff m_thresLast;
TCoeff m_thresSSbb;
// distortion normalization
int m_DistShift;
int64_t m_DistAdd;
int64_t m_DistStepAdd;
int64_t m_DistOrgFact;
};
inline int ceil_log2(uint64_t x)
{
static const uint64_t t[6] = { 0xFFFFFFFF00000000ull, 0x00000000FFFF0000ull, 0x000000000000FF00ull, 0x00000000000000F0ull, 0x000000000000000Cull, 0x0000000000000002ull };
int y = (((x & (x - 1)) == 0) ? 0 : 1);
int j = 32;
for( int i = 0; i < 6; i++)
{
int k = (((x & t[i]) == 0) ? 0 : j);
y += k;
x >>= k;
j >>= 1;
}
return y;
}
void Quantizer::initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda )
{
#if HEVC_USE_SCALING_LISTS
CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif
CHECKD( lambda <= 0.0, "Lambda must be greater than 0" );
const int qpDQ = cQP.Qp + 1;
const int qpPer = qpDQ / 6;
const int qpRem = qpDQ - 6 * qpPer;
const SPS& sps = *tu.cs->sps;
const CompArea& area = tu.blocks[ compID ];
const ChannelType chType = toChannelType( compID );
const int channelBitDepth = sps.getBitDepth( chType );
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
const int nomTransformShift = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
#if JVET_M0464_UNI_MTS
const bool clipTransformShift = ( tu.mtsIdx==1 && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
#else

Karsten Suehring
committed
const bool clipTransformShift = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );

Karsten Suehring
committed
const int transformShift = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );
// quant parameters
m_QShift = QUANT_SHIFT - 1 + qpPer + transformShift;
m_QAdd = -( ( 3 << m_QShift ) >> 1 );
#if HM_QTBT_AS_IN_JEM_QUANT
#if JVET_M0119_NO_TRANSFORM_SKIP_QUANTISATION_ADJUSTMENT
Intermediate_Int invShift = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( tu, compID ) ? ADJ_DEQUANT_SHIFT : 0 );
m_QScale = ( TU::needsSqrt2Scale( tu, compID ) ? ( g_quantScales[ qpRem ] * 181 ) >> 7 : g_quantScales[ qpRem ] );
#else

Karsten Suehring
committed
Intermediate_Int invShift = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
m_QScale = ( TU::needsSqrt2Scale( area ) ? ( g_quantScales[ qpRem ] * 181 ) >> 7 : g_quantScales[ qpRem ] );

Karsten Suehring
committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
#else
Intermediate_Int invShift = IQUANT_SHIFT + 1 - qpPer - transformShift;
m_QScale = g_quantScales [ qpRem ];
#endif
const unsigned qIdxBD = std::min<unsigned>( maxLog2TrDynamicRange + 1, 8*sizeof(Intermediate_Int) + invShift - IQUANT_SHIFT - 1 );
m_maxQIdx = ( 1 << (qIdxBD-1) ) - 4;
m_thresLast = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );
m_thresSSbb = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );
// distortion calculation parameters
const int64_t qScale = g_quantScales[ qpRem ];
#if HM_QTBT_AS_IN_JEM_QUANT
const int nomDShift =
SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)) + m_QShift;
#else
const int nomDShift = SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth))
+ m_QShift + (TU::needsQP3Offset(tu, compID) ? 1 : 0);
#endif
const double qScale2 = double( qScale * qScale );
const double nomDistFactor = ( nomDShift < 0 ? 1.0/(double(int64_t(1)<<(-nomDShift))*qScale2*lambda) : double(int64_t(1)<<nomDShift)/(qScale2*lambda) );
const int64_t pow2dfShift = (int64_t)( nomDistFactor * qScale2 ) + 1;
const int dfShift = ceil_log2( pow2dfShift );
m_DistShift = 62 + m_QShift - 2*maxLog2TrDynamicRange - dfShift;
m_DistAdd = (int64_t(1) << m_DistShift) >> 1;
m_DistStepAdd = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+m_QShift)) + .5 );
m_DistOrgFact = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+1 )) + .5 );
}
void Quantizer::dequantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff ) const
{
#if HEVC_USE_SCALING_LISTS
CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif
//----- set basic parameters -----
const CompArea& area = tu.blocks[ compID ];
const int numCoeff = area.area();
const SizeType hsId = gp_sizeIdxInfo->idxFrom( area.width );
const SizeType vsId = gp_sizeIdxInfo->idxFrom( area.height );
#if HEVC_USE_MDCS
const CoeffScanType scanType = CoeffScanType( TU::getCoefScanIdx( tu, compID ) );
#else
const CoeffScanType scanType = SCAN_DIAG;
#endif
#if JVET_M0102_INTRA_SUBPARTITIONS
const unsigned* scan = g_scanOrder[ toChannelType(compID) ][ SCAN_GROUPED_4x4 ][ scanType ][ hsId ][ vsId ];
#else

Karsten Suehring
committed
const unsigned* scan = g_scanOrder[ SCAN_GROUPED_4x4 ][ scanType ][ hsId ][ vsId ];

Karsten Suehring
committed
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
const TCoeff* qCoeff = tu.getCoeffs( compID ).buf;
TCoeff* tCoeff = recCoeff.buf;
//----- reset coefficients and get last scan index -----
::memset( tCoeff, 0, numCoeff * sizeof(TCoeff) );
int lastScanIdx = -1;
for( int scanIdx = numCoeff - 1; scanIdx >= 0; scanIdx-- )
{
if( qCoeff[ scan[ scanIdx ] ] )
{
lastScanIdx = scanIdx;
break;
}
}
if( lastScanIdx < 0 )
{
return;
}
//----- set dequant parameters -----
const int qpDQ = cQP.Qp + 1;
const int qpPer = qpDQ / 6;
const int qpRem = qpDQ - 6 * qpPer;
const SPS& sps = *tu.cs->sps;
const ChannelType chType = toChannelType( compID );
const int channelBitDepth = sps.getBitDepth( chType );
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
const TCoeff minTCoeff = -( 1 << maxLog2TrDynamicRange );
const TCoeff maxTCoeff = ( 1 << maxLog2TrDynamicRange ) - 1;
const int nomTransformShift = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
#if JVET_M0464_UNI_MTS
const bool clipTransformShift = ( tu.mtsIdx==1 && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
#else

Karsten Suehring
committed
const bool clipTransformShift = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );

Karsten Suehring
committed
const int transformShift = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );
#if HM_QTBT_AS_IN_JEM_QUANT
#if JVET_M0119_NO_TRANSFORM_SKIP_QUANTISATION_ADJUSTMENT
Intermediate_Int shift = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( tu, compID ) ? ADJ_DEQUANT_SHIFT : 0 );
Intermediate_Int invQScale = g_invQuantScales[ qpRem ] * ( TU::needsSqrt2Scale( tu, compID ) ? 181 : 1 );
#else

Karsten Suehring
committed
Intermediate_Int shift = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
Intermediate_Int invQScale = g_invQuantScales[ qpRem ] * ( TU::needsSqrt2Scale( area ) ? 181 : 1 );

Karsten Suehring
committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
#else
Intermediate_Int shift = IQUANT_SHIFT + 1 - qpPer - transformShift;
Intermediate_Int invQScale = g_invQuantScales[ qpRem ];
#endif
if( shift < 0 )
{
invQScale <<= -shift;
shift = 0;
}
Intermediate_Int add = ( 1 << shift ) >> 1;
//----- dequant coefficients -----
for( int state = 0, scanIdx = lastScanIdx; scanIdx >= 0; scanIdx-- )
{
const unsigned rasterPos = scan [ scanIdx ];
const TCoeff& level = qCoeff[ rasterPos ];
if( level )
{
Intermediate_Int qIdx = ( level << 1 ) + ( level > 0 ? -(state>>1) : (state>>1) );
Intermediate_Int nomTCoeff = ( qIdx * invQScale + add ) >> shift;
tCoeff[ rasterPos ] = (TCoeff)Clip3<Intermediate_Int>( minTCoeff, maxTCoeff, nomTCoeff );
}
state = ( 32040 >> ((state<<2)+((level&1)<<1)) ) & 3; // the 16-bit value "32040" represent the state transition table
}
}
inline void Quantizer::preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const
{
int64_t scaledOrg = int64_t( absCoeff ) * m_QScale;
TCoeff qIdx = std::max<TCoeff>( 1, std::min<TCoeff>( m_maxQIdx, TCoeff( ( scaledOrg + m_QAdd ) >> m_QShift ) ) );
int64_t scaledAdd = qIdx * m_DistStepAdd - scaledOrg * m_DistOrgFact;
PQData& pq_a = pqData[ qIdx & 3 ];
pq_a.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_a.absLevel = ( ++qIdx ) >> 1;
scaledAdd += m_DistStepAdd;
PQData& pq_b = pqData[ qIdx & 3 ];
pq_b.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_b.absLevel = ( ++qIdx ) >> 1;
scaledAdd += m_DistStepAdd;
PQData& pq_c = pqData[ qIdx & 3 ];
pq_c.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_c.absLevel = ( ++qIdx ) >> 1;
scaledAdd += m_DistStepAdd;
PQData& pq_d = pqData[ qIdx & 3 ];
pq_d.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_d.absLevel = ( ++qIdx ) >> 1;
}
/*================================================================================*/
/*===== =====*/
/*===== T C Q S T A T E =====*/
/*===== =====*/
/*================================================================================*/
class State;
struct SbbCtx
{
uint8_t* sbbFlags;
uint8_t* levels;
};
class CommonCtx
{
public:
CommonCtx() : m_currSbbCtx( m_allSbbCtx ), m_prevSbbCtx( m_currSbbCtx + 4 ) {}
inline void swap() { std::swap(m_currSbbCtx, m_prevSbbCtx); }
inline void reset( const TUParameters& tuPars, const RateEstimator &rateEst)
{
m_nbInfo = tuPars.m_scanId2NbInfoOut;
::memcpy( m_sbbFlagBits, rateEst.sigSbbFracBits(), 2*sizeof(BinFracBits) );
const int numSbb = tuPars.m_numSbb;
const int chunkSize = numSbb + tuPars.m_numCoeff;
uint8_t* nextMem = m_memory;
for( int k = 0; k < 8; k++, nextMem += chunkSize )
{
m_allSbbCtx[k].sbbFlags = nextMem;
m_allSbbCtx[k].levels = nextMem + numSbb;
}
}

Karsten Suehring
committed
inline void update(const ScanInfo &scanInfo, const State *prevState, State &currState);
private:
const NbInfoOut* m_nbInfo;
BinFracBits m_sbbFlagBits[2];
SbbCtx m_allSbbCtx [8];
SbbCtx* m_currSbbCtx;
SbbCtx* m_prevSbbCtx;
uint8_t m_memory[ 8 * ( MAX_TU_SIZE * MAX_TU_SIZE + MLS_GRP_NUM ) ];
};
#define RICEMAX 32
Muhammed Coban
committed
#if JVET_M0470
const int32_t g_goRiceBits[4][RICEMAX] =
{
{ 32768, 65536, 98304, 131072, 163840, 196608, 262144, 262144, 327680, 327680, 327680, 327680, 393216, 393216, 393216, 393216, 393216, 393216, 393216, 393216, 458752, 458752, 458752, 458752, 458752, 458752, 458752, 458752, 458752, 458752, 458752, 458752},
{ 65536, 65536, 98304, 98304, 131072, 131072, 163840, 163840, 196608, 196608, 229376, 229376, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984},
{ 98304, 98304, 98304, 98304, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 262144, 262144, 262144, 262144, 327680, 327680, 327680, 327680, 327680, 327680, 327680, 327680},
{ 131072, 131072, 131072, 131072, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 229376, 229376, 229376, 229376}
};
#else
const int32_t g_goRiceBits[4][RICEMAX] =
{
{ 32768, 65536, 98304, 131072, 163840, 196608, 229376, 294912, 294912, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520 },
{ 65536, 65536, 98304, 98304, 131072, 131072, 163840, 163840, 196608, 196608, 229376, 229376, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984 },
{ 98304, 98304, 98304, 98304, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 262144, 262144, 262144, 262144, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448 },
{ 131072, 131072, 131072, 131072, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 229376, 229376, 229376, 229376 }
};
Muhammed Coban
committed
#endif

Karsten Suehring
committed
class State
{
friend class CommonCtx;
public:
State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId );
template<uint8_t numIPos>
inline void updateState(const ScanInfo &scanInfo, const State *prevStates, const Decision &decision);
inline void updateStateEOS(const ScanInfo &scanInfo, const State *prevStates, const State *skipStates,
const Decision &decision);
inline void init()
{
m_rdCost = std::numeric_limits<int64_t>::max()>>1;
m_numSigSbb = 0;
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
m_remRegBins = 4; // just large enough for last scan pos
#else
m_remRegBins = 3; // just large enough for last scan pos

Karsten Suehring
committed
m_refSbbCtxId = -1;
m_sigFracBits = m_sigFracBitsArray[ 0 ];
m_coeffFracBits = m_gtxFracBitsArray[ 0 ];
m_goRicePar = 0;
m_goRiceZero = 0;

Karsten Suehring
committed
}
void checkRdCosts( const ScanPosType spt, const PQData& pqDataA, const PQData& pqDataB, Decision& decisionA, Decision& decisionB, bool zeroFix) const
void checkRdCosts( const ScanPosType spt, const PQData& pqDataA, const PQData& pqDataB, Decision& decisionA, Decision& decisionB) const
{
const int32_t* goRiceTab = g_goRiceBits[m_goRicePar];
#if JVET_M0297_32PT_MTS_ZERO_OUT
int64_t rdCostA;
int64_t rdCostB;
int64_t rdCostZ;
#else
int64_t rdCostA = m_rdCost + pqDataA.deltaDist;
int64_t rdCostB = m_rdCost + pqDataB.deltaDist;
int64_t rdCostZ = m_rdCost;
#endif
#if JVET_M0297_32PT_MTS_ZERO_OUT
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
{
rdCostZ = m_rdCost;
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
if( m_remRegBins >= 4 )
#else
if( m_remRegBins >= 3 )
#endif
{
if( spt == SCAN_ISCSBB )
{
rdCostZ += m_sigFracBits.intBits[0];
}
else if( spt == SCAN_SOCSBB )
{
rdCostZ += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[0];
}
else if( m_numSigSbb )
{
rdCostZ += m_sigFracBits.intBits[0];
}
else
{
rdCostZ = decisionA.rdCost;
}
}
else
{
rdCostZ += goRiceTab[m_goRiceZero];
}
if( rdCostZ < decisionA.rdCost )
{
decisionA.rdCost = rdCostZ;
decisionA.absLevel = 0;
decisionA.prevId = m_stateId;
}
}
else
{
rdCostA = m_rdCost + pqDataA.deltaDist;
rdCostB = m_rdCost + pqDataB.deltaDist;
rdCostZ = m_rdCost;
#endif
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
if( m_remRegBins >= 4 )
#else
if( m_remRegBins >= 3 )
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
{
if( pqDataA.absLevel < 4 )
rdCostA += m_coeffFracBits.bits[pqDataA.absLevel];
else
{
const unsigned value = (pqDataA.absLevel - 4) >> 1;
rdCostA += m_coeffFracBits.bits[pqDataA.absLevel - (value << 1)] + goRiceTab[value<RICEMAX ? value : RICEMAX-1];
}
if( pqDataB.absLevel < 4 )
rdCostB += m_coeffFracBits.bits[pqDataB.absLevel];
else
{
const unsigned value = (pqDataB.absLevel - 4) >> 1;
rdCostB += m_coeffFracBits.bits[pqDataB.absLevel - (value << 1)] + goRiceTab[value<RICEMAX ? value : RICEMAX-1];
}
if( spt == SCAN_ISCSBB )
{
rdCostA += m_sigFracBits.intBits[1];
rdCostB += m_sigFracBits.intBits[1];
rdCostZ += m_sigFracBits.intBits[0];
}
else if( spt == SCAN_SOCSBB )
{
rdCostA += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
rdCostB += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
rdCostZ += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[0];
}
else if( m_numSigSbb )
{
rdCostA += m_sigFracBits.intBits[1];
rdCostB += m_sigFracBits.intBits[1];
rdCostZ += m_sigFracBits.intBits[0];
}
else
{
rdCostZ = decisionA.rdCost;
}
}
else
{
rdCostA += (1 << SCALE_BITS) + goRiceTab[pqDataA.absLevel <= m_goRiceZero ? pqDataA.absLevel - 1 : (pqDataA.absLevel<RICEMAX ? pqDataA.absLevel : RICEMAX-1)];
rdCostB += (1 << SCALE_BITS) + goRiceTab[pqDataB.absLevel <= m_goRiceZero ? pqDataB.absLevel - 1 : (pqDataB.absLevel<RICEMAX ? pqDataB.absLevel : RICEMAX-1)];
rdCostZ += goRiceTab[m_goRiceZero];
}
if( rdCostA < decisionA.rdCost )
{
decisionA.rdCost = rdCostA;
decisionA.absLevel = pqDataA.absLevel;
decisionA.prevId = m_stateId;
}
if( rdCostZ < decisionA.rdCost )
{
decisionA.rdCost = rdCostZ;
decisionA.absLevel = 0;
decisionA.prevId = m_stateId;
}
if( rdCostB < decisionB.rdCost )
{
decisionB.rdCost = rdCostB;
decisionB.absLevel = pqDataB.absLevel;
decisionB.prevId = m_stateId;
}
#if JVET_M0297_32PT_MTS_ZERO_OUT
}
#endif

Karsten Suehring
committed
inline void checkRdCostStart(int32_t lastOffset, const PQData &pqData, Decision &decision) const
{
int64_t rdCost = pqData.deltaDist + lastOffset;
if (pqData.absLevel < 4)
{
rdCost += m_coeffFracBits.bits[pqData.absLevel];
}
else
{
const unsigned value = (pqData.absLevel - 4) >> 1;
rdCost += m_coeffFracBits.bits[pqData.absLevel - (value << 1)] + g_goRiceBits[m_goRicePar][value < RICEMAX ? value : RICEMAX-1];
}

Karsten Suehring
committed
if( rdCost < decision.rdCost )
{
decision.rdCost = rdCost;
decision.absLevel = pqData.absLevel;
decision.prevId = -1;
}
}
inline void checkRdCostSkipSbb(Decision &decision) const
{
int64_t rdCost = m_rdCost + m_sbbFracBits.intBits[0];
if( rdCost < decision.rdCost )
{
decision.rdCost = rdCost;
decision.absLevel = 0;
decision.prevId = 4+m_stateId;
}
}
#if JVET_M0297_32PT_MTS_ZERO_OUT
inline void checkRdCostSkipSbbZeroFix(Decision &decision) const
{
int64_t rdCost = m_rdCost + m_sbbFracBits.intBits[0];
decision.rdCost = rdCost;
decision.absLevel = 0;
decision.prevId = 4 + m_stateId;
}
#endif

Karsten Suehring
committed
private:
int64_t m_rdCost;
uint16_t m_absLevelsAndCtxInit[24]; // 16x8bit for abs levels + 16x16bit for ctx init id
int8_t m_numSigSbb;
int8_t m_remRegBins;
int8_t m_refSbbCtxId;

Karsten Suehring
committed
BinFracBits m_sbbFracBits;
BinFracBits m_sigFracBits;
CoeffFracBits m_coeffFracBits;
int8_t m_goRicePar;
int8_t m_goRiceZero;
const int8_t m_stateId;

Karsten Suehring
committed
const BinFracBits*const m_sigFracBitsArray;
const CoeffFracBits*const m_gtxFracBitsArray;
const uint32_t*const m_goRiceZeroArray;

Karsten Suehring
committed
CommonCtx& m_commonCtx;
};
State::State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId )
: m_sbbFracBits { { 0, 0 } }
, m_stateId ( stateId )
, m_sigFracBitsArray( rateEst.sigFlagBits(stateId) )
, m_gtxFracBitsArray( rateEst.gtxFracBits(stateId) )
, m_goRiceZeroArray ( g_auiGoRicePosCoeff0[std::max(0,stateId-1)] )

Karsten Suehring
committed
, m_commonCtx ( commonCtx )
{
}
template<uint8_t numIPos>
inline void State::updateState(const ScanInfo &scanInfo, const State *prevStates, const Decision &decision)
{
m_rdCost = decision.rdCost;
if( decision.prevId > -2 )
{
if( decision.prevId >= 0 )
{
const State* prvState = prevStates + decision.prevId;
m_numSigSbb = prvState->m_numSigSbb + !!decision.absLevel;
m_refSbbCtxId = prvState->m_refSbbCtxId;
m_sbbFracBits = prvState->m_sbbFracBits;
m_remRegBins = prvState->m_remRegBins - 1;
m_goRicePar = prvState->m_goRicePar;
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
if( m_remRegBins >= 4 )
#else
if( m_remRegBins >= 3 )
{
TCoeff rem = (decision.absLevel - 4) >> 1;
if( m_goRicePar < 3 && rem > (3<<m_goRicePar)-1 )
{
m_goRicePar++;
}
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
m_remRegBins -= (decision.absLevel < 2 ? decision.absLevel : 3);
#else
m_remRegBins -= std::min<TCoeff>( decision.absLevel, 2 );

Karsten Suehring
committed
::memcpy( m_absLevelsAndCtxInit, prvState->m_absLevelsAndCtxInit, 48*sizeof(uint8_t) );
}
else
{
m_numSigSbb = 1;
m_refSbbCtxId = -1;
if ( scanInfo.sbbSize == 4 )
{
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
m_remRegBins = MAX_NUM_REG_BINS_2x2SUBBLOCK - (decision.absLevel < 2 ? decision.absLevel : 3);
#else
m_remRegBins = MAX_NUM_REG_BINS_2x2SUBBLOCK - MAX_NUM_GT2_BINS_2x2SUBBLOCK - std::min<TCoeff>( decision.absLevel, 2 );
}
else
{
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
m_remRegBins = MAX_NUM_REG_BINS_4x4SUBBLOCK - (decision.absLevel < 2 ? decision.absLevel : 3);
#else
m_remRegBins = MAX_NUM_REG_BINS_4x4SUBBLOCK - MAX_NUM_GT2_BINS_4x4SUBBLOCK - std::min<TCoeff>( decision.absLevel, 2 );
}
m_goRicePar = ( ((decision.absLevel - 4) >> 1) > (3<<0)-1 ? 1 : 0 );

Karsten Suehring
committed
::memset( m_absLevelsAndCtxInit, 0, 48*sizeof(uint8_t) );
}
uint8_t* levels = reinterpret_cast<uint8_t*>(m_absLevelsAndCtxInit);
levels[ scanInfo.insidePos ] = (uint8_t)std::min<TCoeff>( 255, decision.absLevel );
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
if (m_remRegBins >= 4)
#else
if (m_remRegBins >= 3)
{
TCoeff tinit = m_absLevelsAndCtxInit[8 + scanInfo.nextInsidePos];
TCoeff sumAbs1 = (tinit >> 3) & 31;
TCoeff sumNum = tinit & 7;
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
#define UPDATE(k) {TCoeff t=levels[scanInfo.nextNbInfoSbb.inPos[k]]; sumAbs1+=std::min<TCoeff>(4+(t&1),t); sumNum+=!!t; }
#else
#define UPDATE(k) {TCoeff t=levels[scanInfo.nextNbInfoSbb.inPos[k]]; sumAbs1+=std::min<TCoeff>(2+(t&1),t); sumNum+=!!t; }
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
if (numIPos == 1)
{
UPDATE(0);
}
else if (numIPos == 2)
{
UPDATE(0);
UPDATE(1);
}
else if (numIPos == 3)
{
UPDATE(0);
UPDATE(1);
UPDATE(2);
}
else if (numIPos == 4)
{
UPDATE(0);
UPDATE(1);
UPDATE(2);
UPDATE(3);
}
else if (numIPos == 5)
{
UPDATE(0);
UPDATE(1);
UPDATE(2);
UPDATE(3);
UPDATE(4);
}
#undef UPDATE
TCoeff sumGt1 = sumAbs1 - sumNum;
m_sigFracBits = m_sigFracBitsArray[scanInfo.sigCtxOffsetNext + (sumAbs1 < 5 ? sumAbs1 : 5)];
m_coeffFracBits = m_gtxFracBitsArray[scanInfo.gtxCtxOffsetNext + (sumGt1 < 4 ? sumGt1 : 4)];
}
else
{
TCoeff sumAbs = m_absLevelsAndCtxInit[8 + scanInfo.nextInsidePos] >> 8;
#define UPDATE(k) {TCoeff t=levels[scanInfo.nextNbInfoSbb.inPos[k]]; sumAbs+=t; }
if (numIPos == 1)
{
UPDATE(0);
}
else if (numIPos == 2)
{
UPDATE(0);
UPDATE(1);
}
else if (numIPos == 3)
{
UPDATE(0);
UPDATE(1);
UPDATE(2);
}
else if (numIPos == 4)
{
UPDATE(0);
UPDATE(1);
UPDATE(2);
UPDATE(3);
}
else if (numIPos == 5)
{
UPDATE(0);
UPDATE(1);
UPDATE(2);
UPDATE(3);
UPDATE(4);
}
#undef UPDATE
sumAbs = std::min(31, sumAbs);
m_goRicePar = g_auiGoRiceParsCoeff[sumAbs];
m_goRiceZero = m_goRiceZeroArray[sumAbs];
}

Karsten Suehring
committed
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
}
}
inline void State::updateStateEOS(const ScanInfo &scanInfo, const State *prevStates, const State *skipStates,
const Decision &decision)
{
m_rdCost = decision.rdCost;
if( decision.prevId > -2 )
{
const State* prvState = 0;
if( decision.prevId >= 0 )
{
prvState = ( decision.prevId < 4 ? prevStates : skipStates - 4 ) + decision.prevId;
m_numSigSbb = prvState->m_numSigSbb + !!decision.absLevel;
::memcpy( m_absLevelsAndCtxInit, prvState->m_absLevelsAndCtxInit, 16*sizeof(uint8_t) );
}
else
{
m_numSigSbb = 1;
::memset( m_absLevelsAndCtxInit, 0, 16*sizeof(uint8_t) );
}
reinterpret_cast<uint8_t*>(m_absLevelsAndCtxInit)[ scanInfo.insidePos ] = (uint8_t)std::min<TCoeff>( 255, decision.absLevel );
m_commonCtx.update( scanInfo, prvState, *this );
TCoeff tinit = m_absLevelsAndCtxInit[ 8 + scanInfo.nextInsidePos ];
TCoeff sumNum = tinit & 7;
TCoeff sumAbs1 = ( tinit >> 3 ) & 31;
TCoeff sumGt1 = sumAbs1 - sumNum;
m_sigFracBits = m_sigFracBitsArray[ scanInfo.sigCtxOffsetNext + ( sumAbs1 < 5 ? sumAbs1 : 5 ) ];
m_coeffFracBits = m_gtxFracBitsArray[ scanInfo.gtxCtxOffsetNext + ( sumGt1 < 4 ? sumGt1 : 4 ) ];
}
}
inline void CommonCtx::update(const ScanInfo &scanInfo, const State *prevState, State &currState)
{
uint8_t* sbbFlags = m_currSbbCtx[ currState.m_stateId ].sbbFlags;
uint8_t* levels = m_currSbbCtx[ currState.m_stateId ].levels;
std::size_t setCpSize = m_nbInfo[ scanInfo.scanIdx - 1 ].maxDist * sizeof(uint8_t);
if( prevState && prevState->m_refSbbCtxId >= 0 )
{
::memcpy( sbbFlags, m_prevSbbCtx[prevState->m_refSbbCtxId].sbbFlags, scanInfo.numSbb*sizeof(uint8_t) );
::memcpy( levels + scanInfo.scanIdx, m_prevSbbCtx[prevState->m_refSbbCtxId].levels + scanInfo.scanIdx, setCpSize );
}
else
{
::memset( sbbFlags, 0, scanInfo.numSbb*sizeof(uint8_t) );
::memset( levels + scanInfo.scanIdx, 0, setCpSize );
}
sbbFlags[ scanInfo.sbbPos ] = !!currState.m_numSigSbb;
::memcpy( levels + scanInfo.scanIdx, currState.m_absLevelsAndCtxInit, scanInfo.sbbSize*sizeof(uint8_t) );
const int sigNSbb = ( ( scanInfo.nextSbbRight ? sbbFlags[ scanInfo.nextSbbRight ] : false ) || ( scanInfo.nextSbbBelow ? sbbFlags[ scanInfo.nextSbbBelow ] : false ) ? 1 : 0 );
currState.m_numSigSbb = 0;
if (scanInfo.sbbSize == 4)
{
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
currState.m_remRegBins = MAX_NUM_REG_BINS_2x2SUBBLOCK;
#else
currState.m_remRegBins = MAX_NUM_REG_BINS_2x2SUBBLOCK - MAX_NUM_GT2_BINS_2x2SUBBLOCK;
}
else
{
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
currState.m_remRegBins = MAX_NUM_REG_BINS_4x4SUBBLOCK;
#else
currState.m_remRegBins = MAX_NUM_REG_BINS_4x4SUBBLOCK - MAX_NUM_GT2_BINS_4x4SUBBLOCK;
}
currState.m_goRicePar = 0;

Karsten Suehring
committed
currState.m_refSbbCtxId = currState.m_stateId;
currState.m_sbbFracBits = m_sbbFlagBits[ sigNSbb ];
uint16_t templateCtxInit[16];
const int scanBeg = scanInfo.scanIdx - scanInfo.sbbSize;
const NbInfoOut* nbOut = m_nbInfo + scanBeg;
const uint8_t* absLevels = levels + scanBeg;
for( int id = 0; id < scanInfo.sbbSize; id++, nbOut++ )
{
if( nbOut->num )
{
TCoeff sumAbs = 0, sumAbs1 = 0, sumNum = 0;
#if JVET_M0173_MOVE_GT2_TO_FIRST_PASS
#define UPDATE(k) {TCoeff t=absLevels[nbOut->outPos[k]]; sumAbs+=t; sumAbs1+=std::min<TCoeff>(4+(t&1),t); sumNum+=!!t; }
#else
#define UPDATE(k) {TCoeff t=absLevels[nbOut->outPos[k]]; sumAbs+=t; sumAbs1+=std::min<TCoeff>(2+(t&1),t); sumNum+=!!t; }

Karsten Suehring
committed
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
UPDATE(0);
if( nbOut->num > 1 )
{
UPDATE(1);
if( nbOut->num > 2 )
{
UPDATE(2);
if( nbOut->num > 3 )
{
UPDATE(3);
if( nbOut->num > 4 )
{
UPDATE(4);
}
}
}
}
#undef UPDATE
templateCtxInit[id] = uint16_t(sumNum) + ( uint16_t(sumAbs1) << 3 ) + ( (uint16_t)std::min<TCoeff>( 127, sumAbs ) << 8 );
}
else
{
templateCtxInit[id] = 0;
}
}
::memset( currState.m_absLevelsAndCtxInit, 0, 16*sizeof(uint8_t) );
::memcpy( currState.m_absLevelsAndCtxInit + 8, templateCtxInit, 16*sizeof(uint16_t) );
}
/*================================================================================*/
/*===== =====*/
/*===== T C Q =====*/
/*===== =====*/
/*================================================================================*/
class DepQuant : private RateEstimator
{
public:
DepQuant();
void quant ( TransformUnit& tu, const CCoeffBuf& srcCoeff, const ComponentID compID, const QpParam& cQP, const double lambda, const Ctx& ctx, TCoeff& absSum );
void dequant ( const TransformUnit& tu, CoeffBuf& recCoeff, const ComponentID compID, const QpParam& cQP ) const;
private:
void xDecideAndUpdate ( const TCoeff absCoeff, const ScanInfo& scanInfo, bool zeroFix );
void xDecide ( const ScanPosType spt, const TCoeff absCoeff, const int lastOffset, Decision* decisions, bool zeroFix );

Karsten Suehring
committed
void xDecideAndUpdate ( const TCoeff absCoeff, const ScanInfo& scanInfo );
void xDecide ( const ScanPosType spt, const TCoeff absCoeff, const int lastOffset, Decision* decisions );

Karsten Suehring
committed
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
private:
CommonCtx m_commonCtx;
State m_allStates[ 12 ];
State* m_currStates;
State* m_prevStates;
State* m_skipStates;
State m_startState;
Quantizer m_quant;
Decision m_trellis[ MAX_TU_SIZE * MAX_TU_SIZE ][ 8 ];
};
#define TINIT(x) {*this,m_commonCtx,x}
DepQuant::DepQuant()
: RateEstimator ()
, m_commonCtx ()
, m_allStates {TINIT(0),TINIT(1),TINIT(2),TINIT(3),TINIT(0),TINIT(1),TINIT(2),TINIT(3),TINIT(0),TINIT(1),TINIT(2),TINIT(3)}
, m_currStates ( m_allStates )
, m_prevStates ( m_currStates + 4 )
, m_skipStates ( m_prevStates + 4 )
, m_startState TINIT(0)
{}
#undef TINIT
void DepQuant::dequant( const TransformUnit& tu, CoeffBuf& recCoeff, const ComponentID compID, const QpParam& cQP ) const
{
m_quant.dequantBlock( tu, compID, cQP, recCoeff );
}
#define DINIT(l,p) {std::numeric_limits<int64_t>::max()>>2,l,p}
static const Decision startDec[8] = {DINIT(-1,-2),DINIT(-1,-2),DINIT(-1,-2),DINIT(-1,-2),DINIT(0,4),DINIT(0,5),DINIT(0,6),DINIT(0,7)};
#undef DINIT
void DepQuant::xDecide( const ScanPosType spt, const TCoeff absCoeff, const int lastOffset, Decision* decisions, bool zeroFix)
void DepQuant::xDecide( const ScanPosType spt, const TCoeff absCoeff, const int lastOffset, Decision* decisions)

Karsten Suehring
committed
{
::memcpy( decisions, startDec, 8*sizeof(Decision) );
PQData pqData[4];
m_quant.preQuantCoeff( absCoeff, pqData );
m_prevStates[0].checkRdCosts( spt, pqData[0], pqData[2], decisions[0], decisions[2], zeroFix);
m_prevStates[1].checkRdCosts( spt, pqData[0], pqData[2], decisions[2], decisions[0], zeroFix);
m_prevStates[2].checkRdCosts( spt, pqData[3], pqData[1], decisions[1], decisions[3], zeroFix);
m_prevStates[3].checkRdCosts( spt, pqData[3], pqData[1], decisions[3], decisions[1], zeroFix);
m_prevStates[0].checkRdCosts( spt, pqData[0], pqData[2], decisions[0], decisions[2]);
m_prevStates[1].checkRdCosts( spt, pqData[0], pqData[2], decisions[2], decisions[0]);
m_prevStates[2].checkRdCosts( spt, pqData[3], pqData[1], decisions[1], decisions[3]);
m_prevStates[3].checkRdCosts( spt, pqData[3], pqData[1], decisions[3], decisions[1]);

Karsten Suehring
committed
if( spt==SCAN_EOCSBB )
{
{
m_skipStates[0].checkRdCostSkipSbbZeroFix( decisions[0] );
m_skipStates[1].checkRdCostSkipSbbZeroFix( decisions[1] );
m_skipStates[2].checkRdCostSkipSbbZeroFix( decisions[2] );
m_skipStates[3].checkRdCostSkipSbbZeroFix( decisions[3] );
}
else
{
#endif

Karsten Suehring
committed
m_skipStates[0].checkRdCostSkipSbb( decisions[0] );
m_skipStates[1].checkRdCostSkipSbb( decisions[1] );
m_skipStates[2].checkRdCostSkipSbb( decisions[2] );
m_skipStates[3].checkRdCostSkipSbb( decisions[3] );
#if JVET_M0297_32PT_MTS_ZERO_OUT
}
#endif

Karsten Suehring
committed
}

Karsten Suehring
committed
m_startState.checkRdCostStart( lastOffset, pqData[0], decisions[0] );
m_startState.checkRdCostStart( lastOffset, pqData[2], decisions[2] );
#if JVET_M0297_32PT_MTS_ZERO_OUT
}
#endif

Karsten Suehring
committed
}
void DepQuant::xDecideAndUpdate( const TCoeff absCoeff, const ScanInfo& scanInfo, bool zeroFix )

Karsten Suehring
committed
void DepQuant::xDecideAndUpdate( const TCoeff absCoeff, const ScanInfo& scanInfo )

Karsten Suehring
committed
{
Decision* decisions = m_trellis[ scanInfo.scanIdx ];
std::swap( m_prevStates, m_currStates );
xDecide( scanInfo.spt, absCoeff, lastOffset(scanInfo.scanIdx), decisions, zeroFix );
xDecide( scanInfo.spt, absCoeff, lastOffset(scanInfo.scanIdx), decisions);

Karsten Suehring
committed
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
if( scanInfo.scanIdx )
{
if( scanInfo.eosbb )
{
m_commonCtx.swap();
m_currStates[0].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[0] );
m_currStates[1].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[1] );
m_currStates[2].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[2] );
m_currStates[3].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[3] );
::memcpy( decisions+4, decisions, 4*sizeof(Decision) );
}
else
{
switch( scanInfo.nextNbInfoSbb.num )
{
case 0:
m_currStates[0].updateState<0>( scanInfo, m_prevStates, decisions[0] );
m_currStates[1].updateState<0>( scanInfo, m_prevStates, decisions[1] );
m_currStates[2].updateState<0>( scanInfo, m_prevStates, decisions[2] );
m_currStates[3].updateState<0>( scanInfo, m_prevStates, decisions[3] );
break;
case 1:
m_currStates[0].updateState<1>( scanInfo, m_prevStates, decisions[0] );
m_currStates[1].updateState<1>( scanInfo, m_prevStates, decisions[1] );
m_currStates[2].updateState<1>( scanInfo, m_prevStates, decisions[2] );
m_currStates[3].updateState<1>( scanInfo, m_prevStates, decisions[3] );
break;
case 2:
m_currStates[0].updateState<2>( scanInfo, m_prevStates, decisions[0] );
m_currStates[1].updateState<2>( scanInfo, m_prevStates, decisions[1] );
m_currStates[2].updateState<2>( scanInfo, m_prevStates, decisions[2] );
m_currStates[3].updateState<2>( scanInfo, m_prevStates, decisions[3] );
break;
case 3:
m_currStates[0].updateState<3>( scanInfo, m_prevStates, decisions[0] );
m_currStates[1].updateState<3>( scanInfo, m_prevStates, decisions[1] );
m_currStates[2].updateState<3>( scanInfo, m_prevStates, decisions[2] );
m_currStates[3].updateState<3>( scanInfo, m_prevStates, decisions[3] );
break;
case 4:
m_currStates[0].updateState<4>( scanInfo, m_prevStates, decisions[0] );
m_currStates[1].updateState<4>( scanInfo, m_prevStates, decisions[1] );
m_currStates[2].updateState<4>( scanInfo, m_prevStates, decisions[2] );
m_currStates[3].updateState<4>( scanInfo, m_prevStates, decisions[3] );
break;
default:
m_currStates[0].updateState<5>( scanInfo, m_prevStates, decisions[0] );
m_currStates[1].updateState<5>( scanInfo, m_prevStates, decisions[1] );
m_currStates[2].updateState<5>( scanInfo, m_prevStates, decisions[2] );
m_currStates[3].updateState<5>( scanInfo, m_prevStates, decisions[3] );
}
}
if( scanInfo.spt == SCAN_SOCSBB )

Karsten Suehring
committed
{
std::swap( m_prevStates, m_skipStates );
}
}
}
void DepQuant::quant( TransformUnit& tu, const CCoeffBuf& srcCoeff, const ComponentID compID, const QpParam& cQP, const double lambda, const Ctx& ctx, TCoeff& absSum )
{
CHECKD( tu.cs->sps->getSpsRangeExtension().getExtendedPrecisionProcessingFlag(), "ext precision is not supported" );

Karsten Suehring
committed
//===== reset / pre-init =====
const TUParameters& tuPars = *g_Rom.getTUPars( tu.blocks[compID], compID );

Karsten Suehring
committed
m_quant.initQuantBlock ( tu, compID, cQP, lambda );
TCoeff* qCoeff = tu.getCoeffs( compID ).buf;
const TCoeff* tCoeff = srcCoeff.buf;
const int numCoeff = tu.blocks[compID].area();
::memset( tu.getCoeffs( compID ).buf, 0x00, numCoeff*sizeof(TCoeff) );
absSum = 0;
#if JVET_M0297_32PT_MTS_ZERO_OUT
const CompArea& area = tu.blocks[compID];
const uint32_t width = area.width;
const uint32_t height = area.height;

Karsten Suehring
committed
//===== find first test position =====
int firstTestPos = numCoeff - 1;
const TCoeff thres = m_quant.getLastThreshold();
for( ; firstTestPos >= 0; firstTestPos-- )
{
if( abs( tCoeff[ tuPars.m_scanId2BlkPos[firstTestPos] ] ) > thres )

Karsten Suehring
committed
{
break;
}
}
if( firstTestPos < 0 )
{
return;
}
//===== real init =====
RateEstimator::initCtx( tuPars, tu, compID, ctx.getFracBitsAcess() );
m_commonCtx.reset( tuPars, *this );

Karsten Suehring
committed
for( int k = 0; k < 12; k++ )
{
m_allStates[k].init();
}
m_startState.init();
int effWidth = width, effHeight = height;
#if JVET_M0464_UNI_MTS
if( tu.mtsIdx > 1 && !tu.cu->transQuantBypass && compID == COMPONENT_Y )
#else
if( tu.cu->emtFlag && !tu.transformSkip[compID] && !tu.cu->transQuantBypass && compID == COMPONENT_Y )
#endif
{
effHeight = ( height == 32 ) ? 16 : height;
effWidth = ( width == 32 ) ? 16 : width;

Karsten Suehring
committed
//===== populate trellis =====
for( int scanIdx = firstTestPos; scanIdx >= 0; scanIdx-- )
{
const ScanInfo& scanInfo = tuPars.m_scanInfo[ scanIdx ];
xDecideAndUpdate( abs( tCoeff[ scanInfo.rasterPos ] ), scanInfo, ( effWidth < width || effHeight < height ) && ( scanInfo.posX >= effWidth || scanInfo.posY >= effHeight ) );
xDecideAndUpdate( abs( tCoeff[ scanInfo.rasterPos ] ), scanInfo );

Karsten Suehring
committed
//===== find best path =====
Decision decision = { std::numeric_limits<int64_t>::max(), -1, -2 };
int64_t minPathCost = 0;
for( int8_t stateId = 0; stateId < 4; stateId++ )
{
int64_t pathCost = m_trellis[0][stateId].rdCost;
if( pathCost < minPathCost )
{
decision.prevId = stateId;
minPathCost = pathCost;
}
}
//===== backward scanning =====
int scanIdx = 0;
for( ; decision.prevId >= 0; scanIdx++ )
{
decision = m_trellis[ scanIdx ][ decision.prevId ];
int32_t blkpos = tuPars.m_scanId2BlkPos[ scanIdx ];

Karsten Suehring
committed
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
qCoeff[ blkpos ] = ( tCoeff[ blkpos ] < 0 ? -decision.absLevel : decision.absLevel );
absSum += decision.absLevel;
}
}
}; // namespace DQIntern
//===== interface class =====
DepQuant::DepQuant( const Quant* other, bool enc ) : QuantRDOQ( other )
{
const DepQuant* dq = dynamic_cast<const DepQuant*>( other );
CHECK( other && !dq, "The DepQuant cast must be successfull!" );
p = new DQIntern::DepQuant();
if( enc )
{
DQIntern::g_Rom.init();
}
}
DepQuant::~DepQuant()
{
delete static_cast<DQIntern::DepQuant*>(p);
}
void DepQuant::quant( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &pSrc, TCoeff &uiAbsSum, const QpParam &cQP, const Ctx& ctx )
{
if( tu.cs->slice->getDepQuantEnabledFlag() )
{
static_cast<DQIntern::DepQuant*>(p)->quant( tu, pSrc, compID, cQP, Quant::m_dLambda, ctx, uiAbsSum );
}
else
{
QuantRDOQ::quant( tu, compID, pSrc, uiAbsSum, cQP, ctx );
}
}
void DepQuant::dequant( const TransformUnit &tu, CoeffBuf &dstCoeff, const ComponentID &compID, const QpParam &cQP )
{
if( tu.cs->slice->getDepQuantEnabledFlag() )
{
static_cast<DQIntern::DepQuant*>(p)->dequant( tu, dstCoeff, compID, cQP );
}
else
{
QuantRDOQ::dequant( tu, dstCoeff, compID, cQP );
}
}