Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "DepQuant.h"
#include "TrQuant.h"
#include "CodingStructure.h"
#include "UnitTools.h"
#include <bitset>
namespace DQIntern
{
/*================================================================================*/
/*===== =====*/
/*===== R A T E E S T I M A T O R =====*/
/*===== =====*/
/*================================================================================*/
struct NbInfoSbb
{
uint8_t num;
uint8_t inPos[5];
};
struct NbInfoOut
{
uint16_t maxDist;
uint16_t num;
uint16_t outPos[5];
};
struct CoeffFracBits
{
int32_t bits[6];
};
enum ScanPosType { SCAN_ISCSBB = 0, SCAN_SOCSBB = 1, SCAN_EOCSBB = 2 };
struct ScanInfo
{
ScanInfo() {}
int sbbSize;
int numSbb;
int scanIdx;
int rasterPos;
int sbbPos;
int insidePos;
bool eosbb;
ScanPosType spt;
unsigned sigCtxOffsetNext;
unsigned gtxCtxOffsetNext;
int nextInsidePos;
NbInfoSbb nextNbInfoSbb;
int nextSbbRight;
int nextSbbBelow;
#if JVET_M0297_32PT_MTS_ZERO_OUT
int posX;
int posY;
#endif
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
};
class Rom;
struct TUParameters
{
TUParameters ( const Rom& rom, const unsigned width, const unsigned height, const ChannelType chType );
~TUParameters()
{
delete [] m_scanInfo;
}
ChannelType m_chType;
unsigned m_width;
unsigned m_height;
unsigned m_numCoeff;
unsigned m_numSbb;
unsigned m_log2SbbWidth;
unsigned m_log2SbbHeight;
unsigned m_log2SbbSize;
unsigned m_sbbSize;
unsigned m_sbbMask;
unsigned m_widthInSbb;
unsigned m_heightInSbb;
CoeffScanType m_scanType;
const unsigned* m_scanSbbId2SbbPos;
const unsigned* m_scanId2BlkPos;
const unsigned* m_scanId2PosX;
const unsigned* m_scanId2PosY;
const NbInfoSbb* m_scanId2NbInfoSbb;
const NbInfoOut* m_scanId2NbInfoOut;
ScanInfo* m_scanInfo;
private:
void xSetScanInfo( ScanInfo& scanInfo, int scanIdx );
};
class Rom
{
public:
Rom() : m_scansInitialized(false) {}
~Rom() { xUninitScanArrays(); }
void init () { xInitScanArrays(); }
#if JVET_M0102_INTRA_SUBPARTITIONS
const NbInfoSbb* getNbInfoSbb( int hd, int vd, int ch ) const { return m_scanId2NbInfoSbbArray[hd][vd][ch]; }
const NbInfoOut* getNbInfoOut( int hd, int vd, int ch ) const { return m_scanId2NbInfoOutArray[hd][vd][ch]; }
#else
const NbInfoSbb* getNbInfoSbb( int hd, int vd ) const { return m_scanId2NbInfoSbbArray[hd][vd]; }
const NbInfoOut* getNbInfoOut( int hd, int vd ) const { return m_scanId2NbInfoOutArray[hd][vd]; }
const TUParameters* getTUPars ( const CompArea& area, const ComponentID compID ) const
{
return m_tuParameters[g_aucLog2[area.width]][g_aucLog2[area.height]][toChannelType(compID)];
}
private:
void xInitScanArrays ();
void xUninitScanArrays ();
private:
bool m_scansInitialized;
#if JVET_M0102_INTRA_SUBPARTITIONS
NbInfoSbb* m_scanId2NbInfoSbbArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
NbInfoOut* m_scanId2NbInfoOutArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
#else
NbInfoSbb* m_scanId2NbInfoSbbArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ];
NbInfoOut* m_scanId2NbInfoOutArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ];
TUParameters* m_tuParameters [ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
};
void Rom::xInitScanArrays()
{
if( m_scansInitialized )
{
return;
}
::memset( m_scanId2NbInfoSbbArray, 0, sizeof(m_scanId2NbInfoSbbArray) );
::memset( m_scanId2NbInfoOutArray, 0, sizeof(m_scanId2NbInfoOutArray) );
::memset( m_tuParameters, 0, sizeof(m_tuParameters) );
uint32_t raster2id[ MAX_CU_SIZE * MAX_CU_SIZE ];
::memset(raster2id, 0, sizeof(raster2id));
#if JVET_M0102_INTRA_SUBPARTITIONS
for( int ch = 0; ch < MAX_NUM_CHANNEL_TYPE; ch++ )
{
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
if( (hd == 0 && vd <= 1) || (hd <= 1 && vd == 0) )
{
continue;
}
#else
for( int hd = 1; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 1; vd <= MAX_CU_DEPTH; vd++ )
{
const uint32_t blockWidth = (1 << hd);
const uint32_t blockHeight = (1 << vd);
const uint32_t totalValues = blockWidth * blockHeight;
#if JVET_M0102_INTRA_SUBPARTITIONS
const uint32_t log2CGWidth = g_log2SbbSize[ch][hd][vd][0];
const uint32_t log2CGHeight = g_log2SbbSize[ch][hd][vd][1];
#else
const uint32_t log2CGWidth = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
const uint32_t log2CGHeight = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
const uint32_t groupWidth = 1 << log2CGWidth;
const uint32_t groupHeight = 1 << log2CGHeight;
const uint32_t groupSize = groupWidth * groupHeight;
const CoeffScanType scanType = SCAN_DIAG;
const SizeType blkWidthIdx = gp_sizeIdxInfo->idxFrom( blockWidth );
const SizeType blkHeightIdx = gp_sizeIdxInfo->idxFrom( blockHeight );
#if JVET_M0102_INTRA_SUBPARTITIONS
const uint32_t* scanId2RP = g_scanOrder [ch][SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx];
const uint32_t* scanId2X = g_scanOrderPosXY[ch][SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][0];
const uint32_t* scanId2Y = g_scanOrderPosXY[ch][SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][1];
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd][ch];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd][ch];
#else
const uint32_t* scanId2RP = g_scanOrder [SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx];
const uint32_t* scanId2X = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][0];
const uint32_t* scanId2Y = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][1];
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd];
sId2NbSbb = new NbInfoSbb[ totalValues ];
sId2NbOut = new NbInfoOut[ totalValues ];
for( uint32_t scanId = 0; scanId < totalValues; scanId++ )
{
raster2id[ scanId2RP[ scanId ] ] = scanId;
}
for( unsigned scanId = 0; scanId < totalValues; scanId++ )
{
const int posX = scanId2X [ scanId ];
const int posY = scanId2Y [ scanId ];
const int rpos = scanId2RP[ scanId ];
{
//===== inside subband neighbours =====
NbInfoSbb& nbSbb = sId2NbSbb[ scanId ];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
int cpos[5];
cpos[0] = ( posX + 1 < blockWidth ? ( raster2id[rpos+1 ] - begSbb < groupSize ? raster2id[rpos+1 ] - begSbb : 0 ) : 0 );
cpos[1] = ( posX + 2 < blockWidth ? ( raster2id[rpos+2 ] - begSbb < groupSize ? raster2id[rpos+2 ] - begSbb : 0 ) : 0 );
cpos[2] = ( posX + 1 < blockWidth && posY + 1 < blockHeight ? ( raster2id[rpos+1+blockWidth] - begSbb < groupSize ? raster2id[rpos+1+blockWidth] - begSbb : 0 ) : 0 );
cpos[3] = ( posY + 1 < blockHeight ? ( raster2id[rpos+ blockWidth] - begSbb < groupSize ? raster2id[rpos+ blockWidth] - begSbb : 0 ) : 0 );
cpos[4] = ( posY + 2 < blockHeight ? ( raster2id[rpos+2*blockWidth] - begSbb < groupSize ? raster2id[rpos+2*blockWidth] - begSbb : 0 ) : 0 );
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
for( nbSbb.num = 0; true; )
{
int nk = -1;
for( int k = 0; k < 5; k++ )
{
if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
{
nk = k;
}
}
if( nk < 0 )
{
break;
}
nbSbb.inPos[ nbSbb.num++ ] = uint8_t( cpos[nk] );
cpos[nk] = 0;
}
for( int k = nbSbb.num; k < 5; k++ )
{
nbSbb.inPos[k] = 0;
}
}
{
//===== outside subband neighbours =====
NbInfoOut& nbOut = sId2NbOut[ scanId ];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
int cpos[5];
cpos[0] = ( posX + 1 < blockWidth ? ( raster2id[rpos+1 ] - begSbb >= groupSize ? raster2id[rpos+1 ] : 0 ) : 0 );
cpos[1] = ( posX + 2 < blockWidth ? ( raster2id[rpos+2 ] - begSbb >= groupSize ? raster2id[rpos+2 ] : 0 ) : 0 );
cpos[2] = ( posX + 1 < blockWidth && posY + 1 < blockHeight ? ( raster2id[rpos+1+blockWidth] - begSbb >= groupSize ? raster2id[rpos+1+blockWidth] : 0 ) : 0 );
cpos[3] = ( posY + 1 < blockHeight ? ( raster2id[rpos+ blockWidth] - begSbb >= groupSize ? raster2id[rpos+ blockWidth] : 0 ) : 0 );
cpos[4] = ( posY + 2 < blockHeight ? ( raster2id[rpos+2*blockWidth] - begSbb >= groupSize ? raster2id[rpos+2*blockWidth] : 0 ) : 0 );
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
for( nbOut.num = 0; true; )
{
int nk = -1;
for( int k = 0; k < 5; k++ )
{
if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
{
nk = k;
}
}
if( nk < 0 )
{
break;
}
nbOut.outPos[ nbOut.num++ ] = uint16_t( cpos[nk] );
cpos[nk] = 0;
}
for( int k = nbOut.num; k < 5; k++ )
{
nbOut.outPos[k] = 0;
}
nbOut.maxDist = ( scanId == 0 ? 0 : sId2NbOut[scanId-1].maxDist );
for( int k = 0; k < nbOut.num; k++ )
{
if( nbOut.outPos[k] > nbOut.maxDist )
{
nbOut.maxDist = nbOut.outPos[k];
}
}
}
}
// make it relative
for( unsigned scanId = 0; scanId < totalValues; scanId++ )
{
NbInfoOut& nbOut = sId2NbOut[scanId];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
for( int k = 0; k < nbOut.num; k++ )
{
nbOut.outPos[k] -= begSbb;
}
nbOut.maxDist -= scanId;
}
#if JVET_M0102_INTRA_SUBPARTITIONS
m_tuParameters[hd][vd][ch] = new TUParameters( *this, blockWidth, blockHeight, ChannelType(ch) );
#else
for( int chId = 0; chId < MAX_NUM_CHANNEL_TYPE; chId++ )
{
m_tuParameters[hd][vd][chId] = new TUParameters( *this, blockWidth, blockHeight, ChannelType(chId) );
}
}
}
#if JVET_M0102_INTRA_SUBPARTITIONS
}
#endif
m_scansInitialized = true;
}
void Rom::xUninitScanArrays()
{
if( !m_scansInitialized )
{
return;
}
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#if JVET_M0102_INTRA_SUBPARTITIONS
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
for( int ch = 0; ch < 2; ch++ )
{
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd][ch];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd][ch];
TUParameters*& tuPars = m_tuParameters [hd][vd][ch];
if( sId2NbSbb )
{
delete [] sId2NbSbb;
}
if( sId2NbOut )
{
delete [] sId2NbOut;
}
if( tuPars )
{
delete tuPars;
}
}
}
}
#else
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd];
if( sId2NbSbb )
{
delete [] sId2NbSbb;
}
if( sId2NbOut )
{
delete [] sId2NbOut;
}
for( int chId = 0; chId < MAX_NUM_CHANNEL_TYPE; chId++ )
{
TUParameters*& tuPars = m_tuParameters[hd][vd][chId];
if( tuPars )
{
delete tuPars;
}
}
}
}
m_scansInitialized = false;
}
static Rom g_Rom;
TUParameters::TUParameters( const Rom& rom, const unsigned width, const unsigned height, const ChannelType chType )
{
m_chType = chType;
m_width = width;
m_height = height;
#if JVET_M0257
const uint32_t nonzeroWidth = std::min<uint32_t>(JVET_C0024_ZERO_OUT_TH, m_width);
const uint32_t nonzeroHeight = std::min<uint32_t>(JVET_C0024_ZERO_OUT_TH, m_height);
m_numCoeff = nonzeroWidth * nonzeroHeight;
#else
m_numCoeff = m_width * m_height;
#if JVET_M0102_INTRA_SUBPARTITIONS
m_log2SbbWidth = g_log2SbbSize[m_chType][ g_aucLog2[m_width] ][ g_aucLog2[m_height] ][0];
m_log2SbbHeight = g_log2SbbSize[m_chType][ g_aucLog2[m_width] ][ g_aucLog2[m_height] ][1];
#else
const bool no4x4 = ( ( m_width & 3 ) != 0 || ( m_height & 3 ) != 0 );
m_log2SbbWidth = ( no4x4 ? 1 : 2 );
m_log2SbbHeight = ( no4x4 ? 1 : 2 );
m_log2SbbSize = m_log2SbbWidth + m_log2SbbHeight;
m_sbbSize = ( 1 << m_log2SbbSize );
m_sbbMask = m_sbbSize - 1;
#if JVET_M0257
m_widthInSbb = nonzeroWidth >> m_log2SbbWidth;
m_heightInSbb = nonzeroHeight >> m_log2SbbHeight;
#else
m_widthInSbb = m_width >> m_log2SbbWidth;
m_heightInSbb = m_height >> m_log2SbbHeight;
#endif
m_numSbb = m_widthInSbb * m_heightInSbb;
#if HEVC_USE_MDCS
#error "MDCS is not supported" // use different function...
// m_scanType = CoeffScanType( TU::getCoefScanIdx( tu, m_compID ) );
#else
m_scanType = SCAN_DIAG;
#endif
SizeType hsbb = gp_sizeIdxInfo->idxFrom( m_widthInSbb );
SizeType vsbb = gp_sizeIdxInfo->idxFrom( m_heightInSbb );
SizeType hsId = gp_sizeIdxInfo->idxFrom( m_width );
SizeType vsId = gp_sizeIdxInfo->idxFrom( m_height );
#if JVET_M0102_INTRA_SUBPARTITIONS
m_scanSbbId2SbbPos = g_scanOrder [ chType ][ SCAN_UNGROUPED ][ m_scanType ][ hsbb ][ vsbb ];
m_scanId2BlkPos = g_scanOrder [ chType ][ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
m_scanId2PosX = g_scanOrderPosXY[ chType ][ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
m_scanId2PosY = g_scanOrderPosXY[ chType ][ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
int log2W = g_aucLog2[ m_width ];
int log2H = g_aucLog2[ m_height ];
m_scanId2NbInfoSbb = rom.getNbInfoSbb( log2W, log2H, chType );
m_scanId2NbInfoOut = rom.getNbInfoOut( log2W, log2H, chType );
#else
m_scanSbbId2SbbPos = g_scanOrder [ SCAN_UNGROUPED ][ m_scanType ][ hsbb ][ vsbb ];
m_scanId2BlkPos = g_scanOrder [ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
m_scanId2PosX = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
m_scanId2PosY = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
int log2W = g_aucLog2[ m_width ];
int log2H = g_aucLog2[ m_height ];
m_scanId2NbInfoSbb = rom.getNbInfoSbb( log2W, log2H );
m_scanId2NbInfoOut = rom.getNbInfoOut( log2W, log2H );
m_scanInfo = new ScanInfo[ m_numCoeff ];
for( int scanIdx = 0; scanIdx < m_numCoeff; scanIdx++ )
{
xSetScanInfo( m_scanInfo[scanIdx], scanIdx );
}
}
void TUParameters::xSetScanInfo( ScanInfo& scanInfo, int scanIdx )
{
scanInfo.sbbSize = m_sbbSize;
scanInfo.numSbb = m_numSbb;
scanInfo.scanIdx = scanIdx;
scanInfo.rasterPos = m_scanId2BlkPos[ scanIdx ];
scanInfo.sbbPos = m_scanSbbId2SbbPos[ scanIdx >> m_log2SbbSize ];
scanInfo.insidePos = scanIdx & m_sbbMask;
scanInfo.eosbb = ( scanInfo.insidePos == 0 );
scanInfo.spt = SCAN_ISCSBB;
if( scanInfo.insidePos == m_sbbMask && scanIdx > scanInfo.sbbSize && scanIdx < m_numCoeff - 1 )
scanInfo.spt = SCAN_SOCSBB;
else if( scanInfo.eosbb && scanIdx > 0 && scanIdx < m_numCoeff - m_sbbSize
Loading
Loading full blame...