Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "DepQuant.h"
#include "TrQuant.h"
#include "CodingStructure.h"
#include "UnitTools.h"
#include <bitset>
namespace DQIntern
{
/*================================================================================*/
/*===== =====*/
/*===== R A T E E S T I M A T O R =====*/
/*===== =====*/
/*================================================================================*/
struct NbInfoSbb
{
uint8_t num;
uint8_t inPos[5];
};
struct NbInfoOut
{
uint16_t maxDist;
uint16_t num;
uint16_t outPos[5];
};
struct CoeffFracBits
{
int32_t bits[6];
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
};
enum ScanPosType { SCAN_ISCSBB = 0, SCAN_SOCSBB = 1, SCAN_EOCSBB = 2 };
struct ScanInfo
{
ScanInfo() {}
int sbbSize;
int numSbb;
int scanIdx;
int rasterPos;
int sbbPos;
int insidePos;
bool eosbb;
ScanPosType spt;
unsigned sigCtxOffsetNext;
unsigned gtxCtxOffsetNext;
int nextInsidePos;
NbInfoSbb nextNbInfoSbb;
int nextSbbRight;
int nextSbbBelow;
};
class Rom;
struct TUParameters
{
TUParameters ( const Rom& rom, const unsigned width, const unsigned height, const ChannelType chType );
~TUParameters()
{
delete [] m_scanInfo;
}
ChannelType m_chType;
unsigned m_width;
unsigned m_height;
unsigned m_numCoeff;
unsigned m_numSbb;
unsigned m_log2SbbWidth;
unsigned m_log2SbbHeight;
unsigned m_log2SbbSize;
unsigned m_sbbSize;
unsigned m_sbbMask;
unsigned m_widthInSbb;
unsigned m_heightInSbb;
CoeffScanType m_scanType;
const unsigned* m_scanSbbId2SbbPos;
const unsigned* m_scanId2BlkPos;
const unsigned* m_scanId2PosX;
const unsigned* m_scanId2PosY;
const NbInfoSbb* m_scanId2NbInfoSbb;
const NbInfoOut* m_scanId2NbInfoOut;
ScanInfo* m_scanInfo;
private:
void xSetScanInfo( ScanInfo& scanInfo, int scanIdx );
};
class Rom
{
public:
Rom() : m_scansInitialized(false) {}
~Rom() { xUninitScanArrays(); }
void init () { xInitScanArrays(); }
const NbInfoSbb* getNbInfoSbb( int hd, int vd ) const { return m_scanId2NbInfoSbbArray[hd][vd]; }
const NbInfoOut* getNbInfoOut( int hd, int vd ) const { return m_scanId2NbInfoOutArray[hd][vd]; }
const TUParameters* getTUPars ( const CompArea& area, const ComponentID compID ) const
{
return m_tuParameters[g_aucLog2[area.width]][g_aucLog2[area.height]][toChannelType(compID)];
}
private:
void xInitScanArrays ();
void xUninitScanArrays ();
private:
bool m_scansInitialized;
NbInfoSbb* m_scanId2NbInfoSbbArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ];
NbInfoOut* m_scanId2NbInfoOutArray[ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ];
TUParameters* m_tuParameters [ MAX_CU_DEPTH+1 ][ MAX_CU_DEPTH+1 ][ MAX_NUM_CHANNEL_TYPE ];
};
void Rom::xInitScanArrays()
{
if( m_scansInitialized )
{
return;
}
::memset( m_scanId2NbInfoSbbArray, 0, sizeof(m_scanId2NbInfoSbbArray) );
::memset( m_scanId2NbInfoOutArray, 0, sizeof(m_scanId2NbInfoOutArray) );
::memset( m_tuParameters, 0, sizeof(m_tuParameters) );
uint32_t raster2id[ MAX_CU_SIZE * MAX_CU_SIZE ];
for( int hd = 1; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 1; vd <= MAX_CU_DEPTH; vd++ )
{
const uint32_t blockWidth = (1 << hd);
const uint32_t blockHeight = (1 << vd);
const uint32_t totalValues = blockWidth * blockHeight;
const uint32_t log2CGWidth = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
const uint32_t log2CGHeight = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
const uint32_t groupWidth = 1 << log2CGWidth;
const uint32_t groupHeight = 1 << log2CGHeight;
const uint32_t groupSize = groupWidth * groupHeight;
const CoeffScanType scanType = SCAN_DIAG;
const SizeType blkWidthIdx = gp_sizeIdxInfo->idxFrom( blockWidth );
const SizeType blkHeightIdx = gp_sizeIdxInfo->idxFrom( blockHeight );
const uint32_t* scanId2RP = g_scanOrder [SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx];
const uint32_t* scanId2X = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][0];
const uint32_t* scanId2Y = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blkWidthIdx][blkHeightIdx][1];
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd];
sId2NbSbb = new NbInfoSbb[ totalValues ];
sId2NbOut = new NbInfoOut[ totalValues ];
for( uint32_t scanId = 0; scanId < totalValues; scanId++ )
{
raster2id[ scanId2RP[ scanId ] ] = scanId;
}
for( unsigned scanId = 0; scanId < totalValues; scanId++ )
{
const int posX = scanId2X [ scanId ];
const int posY = scanId2Y [ scanId ];
const int rpos = scanId2RP[ scanId ];
{
//===== inside subband neighbours =====
NbInfoSbb& nbSbb = sId2NbSbb[ scanId ];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
int cpos[5];
cpos[0] = ( posX < blockWidth -1 ? ( raster2id[rpos+1 ] - begSbb < groupSize ? raster2id[rpos+1 ] - begSbb : 0 ) : 0 );
cpos[1] = ( posX < blockWidth -2 ? ( raster2id[rpos+2 ] - begSbb < groupSize ? raster2id[rpos+2 ] - begSbb : 0 ) : 0 );
cpos[2] = ( posX < blockWidth -1 && posY < blockHeight-1 ? ( raster2id[rpos+1+blockWidth] - begSbb < groupSize ? raster2id[rpos+1+blockWidth] - begSbb : 0 ) : 0 );
cpos[3] = ( posY < blockHeight-1 ? ( raster2id[rpos+ blockWidth] - begSbb < groupSize ? raster2id[rpos+ blockWidth] - begSbb : 0 ) : 0 );
cpos[4] = ( posY < blockHeight-2 ? ( raster2id[rpos+2*blockWidth] - begSbb < groupSize ? raster2id[rpos+2*blockWidth] - begSbb : 0 ) : 0 );
for( nbSbb.num = 0; true; )
{
int nk = -1;
for( int k = 0; k < 5; k++ )
{
if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
{
nk = k;
}
}
if( nk < 0 )
{
break;
}
nbSbb.inPos[ nbSbb.num++ ] = uint8_t( cpos[nk] );
cpos[nk] = 0;
}
for( int k = nbSbb.num; k < 5; k++ )
{
nbSbb.inPos[k] = 0;
}
}
{
//===== outside subband neighbours =====
NbInfoOut& nbOut = sId2NbOut[ scanId ];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
int cpos[5];
cpos[0] = ( posX < blockWidth -1 ? ( raster2id[rpos+1 ] - begSbb >= groupSize ? raster2id[rpos+1 ] : 0 ) : 0 );
cpos[1] = ( posX < blockWidth -2 ? ( raster2id[rpos+2 ] - begSbb >= groupSize ? raster2id[rpos+2 ] : 0 ) : 0 );
cpos[2] = ( posX < blockWidth -1 && posY < blockHeight-1 ? ( raster2id[rpos+1+blockWidth] - begSbb >= groupSize ? raster2id[rpos+1+blockWidth] : 0 ) : 0 );
cpos[3] = ( posY < blockHeight-1 ? ( raster2id[rpos+ blockWidth] - begSbb >= groupSize ? raster2id[rpos+ blockWidth] : 0 ) : 0 );
cpos[4] = ( posY < blockHeight-2 ? ( raster2id[rpos+2*blockWidth] - begSbb >= groupSize ? raster2id[rpos+2*blockWidth] : 0 ) : 0 );
for( nbOut.num = 0; true; )
{
int nk = -1;
for( int k = 0; k < 5; k++ )
{
if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
{
nk = k;
}
}
if( nk < 0 )
{
break;
}
nbOut.outPos[ nbOut.num++ ] = uint16_t( cpos[nk] );
cpos[nk] = 0;
}
for( int k = nbOut.num; k < 5; k++ )
{
nbOut.outPos[k] = 0;
}
nbOut.maxDist = ( scanId == 0 ? 0 : sId2NbOut[scanId-1].maxDist );
for( int k = 0; k < nbOut.num; k++ )
{
if( nbOut.outPos[k] > nbOut.maxDist )
{
nbOut.maxDist = nbOut.outPos[k];
}
}
}
}
// make it relative
for( unsigned scanId = 0; scanId < totalValues; scanId++ )
{
NbInfoOut& nbOut = sId2NbOut[scanId];
const int begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
for( int k = 0; k < nbOut.num; k++ )
{
nbOut.outPos[k] -= begSbb;
}
nbOut.maxDist -= scanId;
}
for( int chId = 0; chId < MAX_NUM_CHANNEL_TYPE; chId++ )
{
m_tuParameters[hd][vd][chId] = new TUParameters( *this, blockWidth, blockHeight, ChannelType(chId) );
}
}
}
m_scansInitialized = true;
}
void Rom::xUninitScanArrays()
{
if( !m_scansInitialized )
{
return;
}
for( int hd = 0; hd <= MAX_CU_DEPTH; hd++ )
{
for( int vd = 0; vd <= MAX_CU_DEPTH; vd++ )
{
NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[hd][vd];
NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[hd][vd];
if( sId2NbSbb )
{
delete [] sId2NbSbb;
}
if( sId2NbOut )
{
delete [] sId2NbOut;
}
for( int chId = 0; chId < MAX_NUM_CHANNEL_TYPE; chId++ )
{
TUParameters*& tuPars = m_tuParameters[hd][vd][chId];
if( tuPars )
{
delete tuPars;
}
}
}
}
m_scansInitialized = false;
}
static Rom g_Rom;
TUParameters::TUParameters( const Rom& rom, const unsigned width, const unsigned height, const ChannelType chType )
{
m_chType = chType;
m_width = width;
m_height = height;
m_numCoeff = m_width * m_height;
const bool no4x4 = ( ( m_width & 3 ) != 0 || ( m_height & 3 ) != 0 );
m_log2SbbWidth = ( no4x4 ? 1 : 2 );
m_log2SbbHeight = ( no4x4 ? 1 : 2 );
m_log2SbbSize = m_log2SbbWidth + m_log2SbbHeight;
m_sbbSize = ( 1 << m_log2SbbSize );
m_sbbMask = m_sbbSize - 1;
m_widthInSbb = m_width >> m_log2SbbWidth;
m_heightInSbb = m_height >> m_log2SbbHeight;
m_numSbb = m_widthInSbb * m_heightInSbb;
#if HEVC_USE_MDCS
#error "MDCS is not supported" // use different function...
// m_scanType = CoeffScanType( TU::getCoefScanIdx( tu, m_compID ) );
#else
m_scanType = SCAN_DIAG;
#endif
SizeType hsbb = gp_sizeIdxInfo->idxFrom( m_widthInSbb );
SizeType vsbb = gp_sizeIdxInfo->idxFrom( m_heightInSbb );
SizeType hsId = gp_sizeIdxInfo->idxFrom( m_width );
SizeType vsId = gp_sizeIdxInfo->idxFrom( m_height );
m_scanSbbId2SbbPos = g_scanOrder [ SCAN_UNGROUPED ][ m_scanType ][ hsbb ][ vsbb ];
m_scanId2BlkPos = g_scanOrder [ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
m_scanId2PosX = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
m_scanId2PosY = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
int log2W = g_aucLog2[ m_width ];
int log2H = g_aucLog2[ m_height ];
m_scanId2NbInfoSbb = rom.getNbInfoSbb( log2W, log2H );
m_scanId2NbInfoOut = rom.getNbInfoOut( log2W, log2H );
m_scanInfo = new ScanInfo[ m_numCoeff ];
for( int scanIdx = 0; scanIdx < m_numCoeff; scanIdx++ )
{
xSetScanInfo( m_scanInfo[scanIdx], scanIdx );
}
}
void TUParameters::xSetScanInfo( ScanInfo& scanInfo, int scanIdx )
{
scanInfo.sbbSize = m_sbbSize;
scanInfo.numSbb = m_numSbb;
scanInfo.scanIdx = scanIdx;
scanInfo.rasterPos = m_scanId2BlkPos[ scanIdx ];
scanInfo.sbbPos = m_scanSbbId2SbbPos[ scanIdx >> m_log2SbbSize ];
scanInfo.insidePos = scanIdx & m_sbbMask;
scanInfo.eosbb = ( scanInfo.insidePos == 0 );
scanInfo.spt = SCAN_ISCSBB;
if( scanInfo.insidePos == m_sbbMask && scanIdx > scanInfo.sbbSize && scanIdx < m_numCoeff - 1 )
scanInfo.spt = SCAN_SOCSBB;
else if( scanInfo.eosbb && scanIdx > 0 && scanIdx < m_numCoeff - m_sbbSize )
scanInfo.spt = SCAN_EOCSBB;
if( scanIdx )
{
const int nextScanIdx = scanIdx - 1;
const int diag = m_scanId2PosX[ nextScanIdx ] + m_scanId2PosY[ nextScanIdx ];
if( m_chType == CHANNEL_TYPE_LUMA )
{
scanInfo.sigCtxOffsetNext = ( diag < 2 ? 12 : diag < 5 ? 6 : 0 );
scanInfo.gtxCtxOffsetNext = ( diag < 1 ? 16 : diag < 3 ? 11 : diag < 10 ? 6 : 1 );
}
else
{
scanInfo.sigCtxOffsetNext = ( diag < 2 ? 6 : 0 );
scanInfo.gtxCtxOffsetNext = ( diag < 1 ? 6 : 1 );
}
scanInfo.nextInsidePos = nextScanIdx & m_sbbMask;
scanInfo.nextNbInfoSbb = m_scanId2NbInfoSbb[ nextScanIdx ];
if( scanInfo.eosbb )
{
const int nextSbbPos = m_scanSbbId2SbbPos[ nextScanIdx >> m_log2SbbSize ];
const int nextSbbPosY = nextSbbPos / m_widthInSbb;
const int nextSbbPosX = nextSbbPos - nextSbbPosY * m_widthInSbb;
scanInfo.nextSbbRight = ( nextSbbPosX < m_widthInSbb - 1 ? nextSbbPos + 1 : 0 );
scanInfo.nextSbbBelow = ( nextSbbPosY < m_heightInSbb - 1 ? nextSbbPos + m_widthInSbb : 0 );
}
}
}
class RateEstimator
{
public:
RateEstimator () {}
~RateEstimator() {}
void initCtx ( const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID, const FracBitsAccess& fracBitsAccess );
inline const BinFracBits *sigSbbFracBits() const { return m_sigSbbFracBits; }
inline const BinFracBits *sigFlagBits(unsigned stateId) const
{
return m_sigFracBits[std::max(((int) stateId) - 1, 0)];
}
inline const CoeffFracBits *gtxFracBits(unsigned stateId) const { return m_gtxFracBits; }
inline int32_t lastOffset(unsigned scanIdx) const
{
return m_lastBitsX[m_scanId2PosX[scanIdx]] + m_lastBitsY[m_scanId2PosY[scanIdx]];
}
private:
void xSetLastCoeffOffset ( const FracBitsAccess& fracBitsAccess, const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID );
void xSetSigSbbFracBits ( const FracBitsAccess& fracBitsAccess, ChannelType chType );
void xSetSigFlagBits ( const FracBitsAccess& fracBitsAccess, ChannelType chType );
void xSetGtxFlagBits ( const FracBitsAccess& fracBitsAccess, ChannelType chType );
private:
static const unsigned sm_numCtxSetsSig = 3;
static const unsigned sm_numCtxSetsGtx = 2;
static const unsigned sm_maxNumSigSbbCtx = 2;
static const unsigned sm_maxNumSigCtx = 18;
static const unsigned sm_maxNumGtxCtx = 21;
private:
const unsigned* m_scanId2PosX;
const unsigned* m_scanId2PosY;
int32_t m_lastBitsX [ MAX_TU_SIZE ];
int32_t m_lastBitsY [ MAX_TU_SIZE ];
BinFracBits m_sigSbbFracBits [ sm_maxNumSigSbbCtx ];
BinFracBits m_sigFracBits [ sm_numCtxSetsSig ][ sm_maxNumSigCtx ];
CoeffFracBits m_gtxFracBits [ sm_maxNumGtxCtx ];

Karsten Suehring
committed
};
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
void RateEstimator::initCtx( const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID, const FracBitsAccess& fracBitsAccess )
{
m_scanId2PosX = tuPars.m_scanId2PosX;
m_scanId2PosY = tuPars.m_scanId2PosY;
xSetSigSbbFracBits ( fracBitsAccess, tuPars.m_chType );
xSetSigFlagBits ( fracBitsAccess, tuPars.m_chType );
xSetGtxFlagBits ( fracBitsAccess, tuPars.m_chType );
xSetLastCoeffOffset ( fracBitsAccess, tuPars, tu, compID );
}
void RateEstimator::xSetLastCoeffOffset( const FracBitsAccess& fracBitsAccess, const TUParameters& tuPars, const TransformUnit& tu, const ComponentID compID )
{
const ChannelType chType = ( compID == COMPONENT_Y ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA );
int32_t cbfDeltaBits = 0;
if( compID == COMPONENT_Y && !CU::isIntra(*tu.cu) && !tu.depth )
{
const BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtRootCbf() );
cbfDeltaBits = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
}
else
{
BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtCbf[compID]( DeriveCtx::CtxQtCbf( compID, tu.depth, tu.cbf[COMPONENT_Cb] ) ) );
cbfDeltaBits = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
}
static const unsigned prefixCtx[] = { 0, 0, 0, 3, 6, 10, 15, 21 };
uint32_t ctxBits [ LAST_SIGNIFICANT_GROUPS ];
for( unsigned xy = 0; xy < 2; xy++ )
{
int32_t bitOffset = ( xy ? cbfDeltaBits : 0 );
int32_t* lastBits = ( xy ? m_lastBitsY : m_lastBitsX );
const unsigned size = ( xy ? tuPars.m_height : tuPars.m_width );
const unsigned log2Size = g_aucNextLog2[ size ];
#if HEVC_USE_MDCS
const bool useYCtx = ( m_scanType == SCAN_VER ? ( xy == 0 ) : ( xy != 0 ) );
#else
const bool useYCtx = ( xy != 0 );
#endif
const CtxSet& ctxSetLast = ( useYCtx ? Ctx::LastY : Ctx::LastX )[ chType ];
const unsigned lastShift = ( compID == COMPONENT_Y ? (log2Size+1)>>2 : Clip3<unsigned>(0,2,size>>3) );
const unsigned lastOffset = ( compID == COMPONENT_Y ? ( prefixCtx[log2Size] ) : 0 );
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
uint32_t sumFBits = 0;
unsigned maxCtxId = g_uiGroupIdx[ size - 1 ];
for( unsigned ctxId = 0; ctxId < maxCtxId; ctxId++ )
{
const BinFracBits bits = fracBitsAccess.getFracBitsArray( ctxSetLast( lastOffset + ( ctxId >> lastShift ) ) );
ctxBits[ ctxId ] = sumFBits + bits.intBits[0] + ( ctxId>3 ? ((ctxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
sumFBits += bits.intBits[1];
}
ctxBits [ maxCtxId ] = sumFBits + ( maxCtxId>3 ? ((maxCtxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
for( unsigned pos = 0; pos < size; pos++ )
{
lastBits[ pos ] = ctxBits[ g_uiGroupIdx[ pos ] ];
}
}
}
void RateEstimator::xSetSigSbbFracBits( const FracBitsAccess& fracBitsAccess, ChannelType chType )
{
const CtxSet& ctxSet = Ctx::SigCoeffGroup[ chType ];
for( unsigned ctxId = 0; ctxId < sm_maxNumSigSbbCtx; ctxId++ )
{
m_sigSbbFracBits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
}
}
void RateEstimator::xSetSigFlagBits( const FracBitsAccess& fracBitsAccess, ChannelType chType )
{
for( unsigned ctxSetId = 0; ctxSetId < sm_numCtxSetsSig; ctxSetId++ )
{
BinFracBits* bits = m_sigFracBits [ ctxSetId ];
const CtxSet& ctxSet = Ctx::SigFlag [ chType + 2*ctxSetId ];
const unsigned numCtx = ( chType == CHANNEL_TYPE_LUMA ? 18 : 12 );
for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
{
bits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
}
}
}
void RateEstimator::xSetGtxFlagBits( const FracBitsAccess& fracBitsAccess, ChannelType chType )
{
const CtxSet& ctxSetPar = Ctx::ParFlag [ chType ];
const CtxSet& ctxSetGt1 = Ctx::GtxFlag [ 2 + chType ];
const CtxSet& ctxSetGt2 = Ctx::GtxFlag [ chType ];
const unsigned numCtx = ( chType == CHANNEL_TYPE_LUMA ? 21 : 11 );
for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
{
BinFracBits fbPar = fracBitsAccess.getFracBitsArray( ctxSetPar( ctxId ) );
BinFracBits fbGt1 = fracBitsAccess.getFracBitsArray( ctxSetGt1( ctxId ) );
BinFracBits fbGt2 = fracBitsAccess.getFracBitsArray( ctxSetGt2( ctxId ) );
CoeffFracBits& cb = m_gtxFracBits[ ctxId ];
int32_t par0 = (1<<SCALE_BITS) + int32_t(fbPar.intBits[0]);
int32_t par1 = (1<<SCALE_BITS) + int32_t(fbPar.intBits[1]);
cb.bits[0] = 0;
cb.bits[1] = fbGt1.intBits[0] + (1 << SCALE_BITS);
cb.bits[2] = fbGt1.intBits[1] + par0 + fbGt2.intBits[0];
cb.bits[3] = fbGt1.intBits[1] + par1 + fbGt2.intBits[0];
cb.bits[4] = fbGt1.intBits[1] + par0 + fbGt2.intBits[1];
cb.bits[5] = fbGt1.intBits[1] + par1 + fbGt2.intBits[1];
}
}

Karsten Suehring
committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/*================================================================================*/
/*===== =====*/
/*===== D A T A S T R U C T U R E S =====*/
/*===== =====*/
/*================================================================================*/
struct PQData
{
TCoeff absLevel;
int64_t deltaDist;
};
struct Decision
{
int64_t rdCost;
TCoeff absLevel;
int prevId;
};
/*================================================================================*/
/*===== =====*/
/*===== P R E - Q U A N T I Z E R =====*/
/*===== =====*/
/*================================================================================*/
class Quantizer
{
public:
Quantizer() {}
void dequantBlock ( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff ) const;
void initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda );
inline void preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const;
inline TCoeff getLastThreshold() const { return m_thresLast; }
inline TCoeff getSSbbThreshold() const { return m_thresSSbb; }
private:
// quantization
int m_QShift;
int64_t m_QAdd;
int64_t m_QScale;
TCoeff m_maxQIdx;
TCoeff m_thresLast;
TCoeff m_thresSSbb;
// distortion normalization
int m_DistShift;
int64_t m_DistAdd;
int64_t m_DistStepAdd;
int64_t m_DistOrgFact;
};
inline int ceil_log2(uint64_t x)
{
static const uint64_t t[6] = { 0xFFFFFFFF00000000ull, 0x00000000FFFF0000ull, 0x000000000000FF00ull, 0x00000000000000F0ull, 0x000000000000000Cull, 0x0000000000000002ull };
int y = (((x & (x - 1)) == 0) ? 0 : 1);
int j = 32;
for( int i = 0; i < 6; i++)
{
int k = (((x & t[i]) == 0) ? 0 : j);
y += k;
x >>= k;
j >>= 1;
}
return y;
}
void Quantizer::initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda )
{
#if HEVC_USE_SCALING_LISTS
CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif
CHECKD( lambda <= 0.0, "Lambda must be greater than 0" );
const int qpDQ = cQP.Qp + 1;
const int qpPer = qpDQ / 6;
const int qpRem = qpDQ - 6 * qpPer;
const SPS& sps = *tu.cs->sps;
const CompArea& area = tu.blocks[ compID ];
const ChannelType chType = toChannelType( compID );
const int channelBitDepth = sps.getBitDepth( chType );
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
const int nomTransformShift = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
#if JVET_M0464_UNI_MTS
const bool clipTransformShift = ( tu.mtsIdx==1 && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
#else

Karsten Suehring
committed
const bool clipTransformShift = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );

Karsten Suehring
committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
const int transformShift = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );
// quant parameters
m_QShift = QUANT_SHIFT - 1 + qpPer + transformShift;
m_QAdd = -( ( 3 << m_QShift ) >> 1 );
#if HM_QTBT_AS_IN_JEM_QUANT
Intermediate_Int invShift = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
m_QScale = ( TU::needsSqrt2Scale( area ) ? ( g_quantScales[ qpRem ] * 181 ) >> 7 : g_quantScales[ qpRem ] );
#else
Intermediate_Int invShift = IQUANT_SHIFT + 1 - qpPer - transformShift;
m_QScale = g_quantScales [ qpRem ];
#endif
const unsigned qIdxBD = std::min<unsigned>( maxLog2TrDynamicRange + 1, 8*sizeof(Intermediate_Int) + invShift - IQUANT_SHIFT - 1 );
m_maxQIdx = ( 1 << (qIdxBD-1) ) - 4;
m_thresLast = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );
m_thresSSbb = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );
// distortion calculation parameters
const int64_t qScale = g_quantScales[ qpRem ];
#if HM_QTBT_AS_IN_JEM_QUANT
const int nomDShift =
SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)) + m_QShift;
#else
const int nomDShift = SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth))
+ m_QShift + (TU::needsQP3Offset(tu, compID) ? 1 : 0);
#endif
const double qScale2 = double( qScale * qScale );
const double nomDistFactor = ( nomDShift < 0 ? 1.0/(double(int64_t(1)<<(-nomDShift))*qScale2*lambda) : double(int64_t(1)<<nomDShift)/(qScale2*lambda) );
const int64_t pow2dfShift = (int64_t)( nomDistFactor * qScale2 ) + 1;
const int dfShift = ceil_log2( pow2dfShift );
m_DistShift = 62 + m_QShift - 2*maxLog2TrDynamicRange - dfShift;
m_DistAdd = (int64_t(1) << m_DistShift) >> 1;
m_DistStepAdd = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+m_QShift)) + .5 );
m_DistOrgFact = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+1 )) + .5 );
}
void Quantizer::dequantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff ) const
{
#if HEVC_USE_SCALING_LISTS
CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif
//----- set basic parameters -----
const CompArea& area = tu.blocks[ compID ];
const int numCoeff = area.area();
const SizeType hsId = gp_sizeIdxInfo->idxFrom( area.width );
const SizeType vsId = gp_sizeIdxInfo->idxFrom( area.height );
#if HEVC_USE_MDCS
const CoeffScanType scanType = CoeffScanType( TU::getCoefScanIdx( tu, compID ) );
#else
const CoeffScanType scanType = SCAN_DIAG;
#endif
const unsigned* scan = g_scanOrder[ SCAN_GROUPED_4x4 ][ scanType ][ hsId ][ vsId ];
const TCoeff* qCoeff = tu.getCoeffs( compID ).buf;
TCoeff* tCoeff = recCoeff.buf;
//----- reset coefficients and get last scan index -----
::memset( tCoeff, 0, numCoeff * sizeof(TCoeff) );
int lastScanIdx = -1;
for( int scanIdx = numCoeff - 1; scanIdx >= 0; scanIdx-- )
{
if( qCoeff[ scan[ scanIdx ] ] )
{
lastScanIdx = scanIdx;
break;
}
}
if( lastScanIdx < 0 )
{
return;
}
//----- set dequant parameters -----
const int qpDQ = cQP.Qp + 1;
const int qpPer = qpDQ / 6;
const int qpRem = qpDQ - 6 * qpPer;
const SPS& sps = *tu.cs->sps;
const ChannelType chType = toChannelType( compID );
const int channelBitDepth = sps.getBitDepth( chType );
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
const TCoeff minTCoeff = -( 1 << maxLog2TrDynamicRange );
const TCoeff maxTCoeff = ( 1 << maxLog2TrDynamicRange ) - 1;
const int nomTransformShift = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
#if JVET_M0464_UNI_MTS
const bool clipTransformShift = ( tu.mtsIdx==1 && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
#else

Karsten Suehring
committed
const bool clipTransformShift = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );

Karsten Suehring
committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
const int transformShift = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );
#if HM_QTBT_AS_IN_JEM_QUANT
Intermediate_Int shift = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
Intermediate_Int invQScale = g_invQuantScales[ qpRem ] * ( TU::needsSqrt2Scale( area ) ? 181 : 1 );
#else
Intermediate_Int shift = IQUANT_SHIFT + 1 - qpPer - transformShift;
Intermediate_Int invQScale = g_invQuantScales[ qpRem ];
#endif
if( shift < 0 )
{
invQScale <<= -shift;
shift = 0;
}
Intermediate_Int add = ( 1 << shift ) >> 1;
//----- dequant coefficients -----
for( int state = 0, scanIdx = lastScanIdx; scanIdx >= 0; scanIdx-- )
{
const unsigned rasterPos = scan [ scanIdx ];
const TCoeff& level = qCoeff[ rasterPos ];
if( level )
{
Intermediate_Int qIdx = ( level << 1 ) + ( level > 0 ? -(state>>1) : (state>>1) );
Intermediate_Int nomTCoeff = ( qIdx * invQScale + add ) >> shift;
tCoeff[ rasterPos ] = (TCoeff)Clip3<Intermediate_Int>( minTCoeff, maxTCoeff, nomTCoeff );
}
state = ( 32040 >> ((state<<2)+((level&1)<<1)) ) & 3; // the 16-bit value "32040" represent the state transition table
}
}
inline void Quantizer::preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const
{
int64_t scaledOrg = int64_t( absCoeff ) * m_QScale;
TCoeff qIdx = std::max<TCoeff>( 1, std::min<TCoeff>( m_maxQIdx, TCoeff( ( scaledOrg + m_QAdd ) >> m_QShift ) ) );
int64_t scaledAdd = qIdx * m_DistStepAdd - scaledOrg * m_DistOrgFact;
PQData& pq_a = pqData[ qIdx & 3 ];
pq_a.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_a.absLevel = ( ++qIdx ) >> 1;
scaledAdd += m_DistStepAdd;
PQData& pq_b = pqData[ qIdx & 3 ];
pq_b.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_b.absLevel = ( ++qIdx ) >> 1;
scaledAdd += m_DistStepAdd;
PQData& pq_c = pqData[ qIdx & 3 ];
pq_c.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_c.absLevel = ( ++qIdx ) >> 1;
scaledAdd += m_DistStepAdd;
PQData& pq_d = pqData[ qIdx & 3 ];
pq_d.deltaDist = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
pq_d.absLevel = ( ++qIdx ) >> 1;
}
/*================================================================================*/
/*===== =====*/
/*===== T C Q S T A T E =====*/
/*===== =====*/
/*================================================================================*/
class State;
struct SbbCtx
{
uint8_t* sbbFlags;
uint8_t* levels;
};
class CommonCtx
{
public:
CommonCtx() : m_currSbbCtx( m_allSbbCtx ), m_prevSbbCtx( m_currSbbCtx + 4 ) {}
inline void swap() { std::swap(m_currSbbCtx, m_prevSbbCtx); }
inline void reset( const TUParameters& tuPars, const RateEstimator &rateEst)
{
m_nbInfo = tuPars.m_scanId2NbInfoOut;
::memcpy( m_sbbFlagBits, rateEst.sigSbbFracBits(), 2*sizeof(BinFracBits) );
const int numSbb = tuPars.m_numSbb;
const int chunkSize = numSbb + tuPars.m_numCoeff;
uint8_t* nextMem = m_memory;
for( int k = 0; k < 8; k++, nextMem += chunkSize )
{
m_allSbbCtx[k].sbbFlags = nextMem;
m_allSbbCtx[k].levels = nextMem + numSbb;
}
}

Karsten Suehring
committed
inline void update(const ScanInfo &scanInfo, const State *prevState, State &currState);
private:
const NbInfoOut* m_nbInfo;
BinFracBits m_sbbFlagBits[2];
SbbCtx m_allSbbCtx [8];
SbbCtx* m_currSbbCtx;
SbbCtx* m_prevSbbCtx;
uint8_t m_memory[ 8 * ( MAX_TU_SIZE * MAX_TU_SIZE + MLS_GRP_NUM ) ];
};
#define RICEMAX 32
const int32_t g_goRiceBits[4][RICEMAX] =
{
{ 32768, 65536, 98304, 131072, 163840, 196608, 229376, 294912, 294912, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520 },
{ 65536, 65536, 98304, 98304, 131072, 131072, 163840, 163840, 196608, 196608, 229376, 229376, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984 },
{ 98304, 98304, 98304, 98304, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 262144, 262144, 262144, 262144, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448 },
{ 131072, 131072, 131072, 131072, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 229376, 229376, 229376, 229376 }
};

Karsten Suehring
committed
class State
{
friend class CommonCtx;
public:
State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId );
template<uint8_t numIPos>
inline void updateState(const ScanInfo &scanInfo, const State *prevStates, const Decision &decision);
inline void updateStateEOS(const ScanInfo &scanInfo, const State *prevStates, const State *skipStates,
const Decision &decision);
inline void init()
{
m_rdCost = std::numeric_limits<int64_t>::max()>>1;
m_numSigSbb = 0;
m_remRegBins = 3; // just large enough for last scan pos

Karsten Suehring
committed
m_refSbbCtxId = -1;
m_sigFracBits = m_sigFracBitsArray[ 0 ];
m_coeffFracBits = m_gtxFracBitsArray[ 0 ];
m_goRicePar = 0;
m_goRiceZero = 0;

Karsten Suehring
committed
}
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
void checkRdCosts( const ScanPosType spt, const PQData& pqDataA, const PQData& pqDataB, Decision& decisionA, Decision& decisionB) const
{
const int32_t* goRiceTab = g_goRiceBits[m_goRicePar];
int64_t rdCostA = m_rdCost + pqDataA.deltaDist;
int64_t rdCostB = m_rdCost + pqDataB.deltaDist;
int64_t rdCostZ = m_rdCost;
if( m_remRegBins >= 3 )
{
if( pqDataA.absLevel < 4 )
rdCostA += m_coeffFracBits.bits[pqDataA.absLevel];
else
{
const unsigned value = (pqDataA.absLevel - 4) >> 1;
rdCostA += m_coeffFracBits.bits[pqDataA.absLevel - (value << 1)] + goRiceTab[value<RICEMAX ? value : RICEMAX-1];
}
if( pqDataB.absLevel < 4 )
rdCostB += m_coeffFracBits.bits[pqDataB.absLevel];
else
{
const unsigned value = (pqDataB.absLevel - 4) >> 1;
rdCostB += m_coeffFracBits.bits[pqDataB.absLevel - (value << 1)] + goRiceTab[value<RICEMAX ? value : RICEMAX-1];
}
if( spt == SCAN_ISCSBB )
{
rdCostA += m_sigFracBits.intBits[1];
rdCostB += m_sigFracBits.intBits[1];
rdCostZ += m_sigFracBits.intBits[0];
}
else if( spt == SCAN_SOCSBB )
{
rdCostA += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
rdCostB += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
rdCostZ += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[0];
}
else if( m_numSigSbb )
{
rdCostA += m_sigFracBits.intBits[1];
rdCostB += m_sigFracBits.intBits[1];
rdCostZ += m_sigFracBits.intBits[0];
}
else
{
rdCostZ = decisionA.rdCost;
}
}
else
{
rdCostA += (1 << SCALE_BITS) + goRiceTab[pqDataA.absLevel <= m_goRiceZero ? pqDataA.absLevel - 1 : (pqDataA.absLevel<RICEMAX ? pqDataA.absLevel : RICEMAX-1)];
rdCostB += (1 << SCALE_BITS) + goRiceTab[pqDataB.absLevel <= m_goRiceZero ? pqDataB.absLevel - 1 : (pqDataB.absLevel<RICEMAX ? pqDataB.absLevel : RICEMAX-1)];
rdCostZ += goRiceTab[m_goRiceZero];
}
if( rdCostA < decisionA.rdCost )
{
decisionA.rdCost = rdCostA;
decisionA.absLevel = pqDataA.absLevel;
decisionA.prevId = m_stateId;
}
if( rdCostZ < decisionA.rdCost )
{
decisionA.rdCost = rdCostZ;
decisionA.absLevel = 0;
decisionA.prevId = m_stateId;
}
if( rdCostB < decisionB.rdCost )
{
decisionB.rdCost = rdCostB;
decisionB.absLevel = pqDataB.absLevel;
decisionB.prevId = m_stateId;
}
}

Karsten Suehring
committed
inline void checkRdCostStart(int32_t lastOffset, const PQData &pqData, Decision &decision) const
{
int64_t rdCost = pqData.deltaDist + lastOffset;
if (pqData.absLevel < 4)
{
rdCost += m_coeffFracBits.bits[pqData.absLevel];
}
else
{
const unsigned value = (pqData.absLevel - 4) >> 1;
rdCost += m_coeffFracBits.bits[pqData.absLevel - (value << 1)] + g_goRiceBits[m_goRicePar][value < RICEMAX ? value : RICEMAX-1];
}

Karsten Suehring
committed
if( rdCost < decision.rdCost )
{
decision.rdCost = rdCost;
decision.absLevel = pqData.absLevel;
decision.prevId = -1;
}
}
inline void checkRdCostSkipSbb(Decision &decision) const
{
int64_t rdCost = m_rdCost + m_sbbFracBits.intBits[0];
if( rdCost < decision.rdCost )
{
decision.rdCost = rdCost;
decision.absLevel = 0;
decision.prevId = 4+m_stateId;
}
}
private:
int64_t m_rdCost;
uint16_t m_absLevelsAndCtxInit[24]; // 16x8bit for abs levels + 16x16bit for ctx init id
int8_t m_numSigSbb;
int8_t m_remRegBins;
int8_t m_refSbbCtxId;

Karsten Suehring
committed
BinFracBits m_sbbFracBits;
BinFracBits m_sigFracBits;
CoeffFracBits m_coeffFracBits;
int8_t m_goRicePar;
int8_t m_goRiceZero;
const int8_t m_stateId;

Karsten Suehring
committed
const BinFracBits*const m_sigFracBitsArray;
const CoeffFracBits*const m_gtxFracBitsArray;
const uint32_t*const m_goRiceZeroArray;

Karsten Suehring
committed
CommonCtx& m_commonCtx;
};
State::State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId )
: m_sbbFracBits { { 0, 0 } }
, m_stateId ( stateId )
, m_sigFracBitsArray( rateEst.sigFlagBits(stateId) )
, m_gtxFracBitsArray( rateEst.gtxFracBits(stateId) )
, m_goRiceZeroArray ( g_auiGoRicePosCoeff0[std::max(0,stateId-1)] )